• Title/Summary/Keyword: Macroporous

Search Result 133, Processing Time 0.029 seconds

Adsorption behavior of platinum-group metals and Co-existing metal ions from simulated high-level liquid waste using HONTA and Crea impregnated adsorbent

  • Naoki Osawa;Seong-Yun Kim;Masahiko Kubota;Hao Wu;Sou Watanabe;Tatsuya Ito;Ryuji Nagaishi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.812-818
    • /
    • 2024
  • The volume and toxicity of radioactive waste can be decreased by separating the components of high-level liquid waste according to their properties. An impregnated silica-based adsorbent was prepared in this study by combining N,N,N',N',N",N"-hexa-n-octylnitrilotriacetamide (HONTA) extractant, N',N'-di-n-hexyl-thiodiglycolamide (Crea) extractant, and macroporous silica polymer composite particles (SiO2-P). The performance of platinum-group metals adsorption and separation on prepared (HONTA + Crea)/SiO2-P adsorbent was then assessed together with that of co-existing metal ions by batch-adsorption and chromatographic separation studies. From the batch-adsorption experiment results, (HONTA + Crea)/SiO2-P adsorbent showed high adsorption performance of Pd(II) owing to an affinity between Pd(II) and Crea extractant based on the Hard and Soft Acids and Bases theory. Additionally, significant adsorption performance was observed toward Zr(IV) and Mo(VI). Compared with studies using the Crea extractant, the high adsorption performance of Zr(IV) and Mo(VI) is attributed to the HONTA extractant. As revealed from the chromatographic experiment results, most of Pd(II) was recovered from the feed solution using 0.2 M thiourea in 0.1 M HNO3. Additionally, the possibility of recovery of Zr(IV), Mo(VI), and Re(VII) was observed using the (HONTA + Crea)/SiO2-P adsorbent.

Leaching and Distribution of Cation in Multi-layered Reclaimed Soil Column with Intermediate Macroporous Layer (대공극층위 형성 간척지 다층토주의 양이온 용탈 및 분포)

  • Ryu, Jin-Hee;Chung, Doug-Young;Hwang, Seon-Woong;Kang, Jong-Guk;Lee, Sang-Bok;Choi, Weon-Young;Ha, Sang-Keun;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.602-609
    • /
    • 2010
  • To investigate desalinization patterns of surface reclaimed saline-sodic soil (RSSS) with subsurface layer of macroporous medium, multi-layered soil columns were constructed. For the multi-layered soil columns, gypsum was treated at the rate of 5 cmolc $kg^{-1}$ in surface (top) while coal bottom ash (CBA) was placed into intermediate layer below the gypsum-treated surface soils followed by the reclaimed saline-sodic soil as bottom layer (BL). The lengths of top soil was 30 cm long while the lengths of the CBA were 20 and 30 cm long. The saturated hydraulic conductivities (Ksat) were $0.39{\times}10^{-4}$ and $0.31{\times}10^{-4}cm\;sec^{-1}$ for RSSS(30 cm)-CBA(20 cm)-BL(20 cm) and RSSS(30 cm)-CBA(20 cm)-RSSS(20 cm), respectively while the lowest $K_{sat}$. was $0.064{\times}10^{-4}cm\;sec^{-1}$ for RSSS(30 cm)-CBA(20 cm)+BL(20 cm). The time required to reach the lowest EC in eluent, 0.3 dS $m^{-1}$ from 33.9 dS $m^{-1}$ was shorter in multi-layered soil columns with GR-CBA than that of RS-SRS, representing that rate of desalinization was greater than 99%. Exchangeable Na decreased by 94.8~96.2 %, while exchangeable Ca increased by 98~129 %.

Macroporous Thick Tin Foil Negative Electrode via Chemical Etching for Lithium-ion Batteries (화학적 식각을 통해 제조한 리튬이온 이차전지용 고용량 다공성 주석후막 음극)

  • Kim, Hae Been;Lee, Pyung Woo;Lee, Dong Geun;Oh, Ji Seon;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.36-42
    • /
    • 2019
  • A macroporous Sn thick film as a high capacity negative electrode for a lithium ion secondary battery was prepared by using a chemical etching method using nitric acid for a Sn film having a thickness of $52{\mu}m$. The porous Sn thick film greatly reduced the over-voltage for the alloying reaction with lithium by the increased reaction area. At the same time. The porous structure of active Sn film plays a part in the buffer and reduces the damage by the volume change during cycles. Since the porous Sn thick film electrode does not require the use of the binder and the conductive carbon black, it has substantially larger energy density. As the concentration of nitric acid in etching solution increased, the degree of the etching increased. The etching of the Sn film effectively proceeded with nitric acid of 3 M concentration or more. The porous Sn film could not be recovered because the most of Sn was eluted within 60 seconds by the rapid etching rate in the 5 M nitric acid. In the case of etching with 4 M nitric acid for 60 seconds, the appropriate porous Sn film was formed with 48.9% of weight loss and 40.3% of thickness change during chemical acid etching process. As the degree of etching of Sn film increased, the electrochemical activity and the reversible capacity for the lithium storage of the Sn film electrode were increased. The highest reversible specific capacity of 650 mAh/g was achieved at the etching condition with 4 M nitric acid. The porous Sn film electrode showed better cycle performance than the conventional electrode using a Sn powder.

Development of Porous Support with Mine Waste Materials (광산 폐기물을 활용한 다공성 담체 개발)

  • 정문영;정명채;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.143-151
    • /
    • 2004
  • This study focused on examining the possibility of recycling mine solid waste as environmental materials, especially for porous media. Basic properties including mineralogical compositions, chemical compositions, and particle size distribution of the tailings from the Sangdong W mine were checked. The mineralogical and chemical compositions of the tailings samples were not much different in depth. According to Korean Standard Leaching Test for Wastes(KSLT), concentrations of heavy metals leached from the tailings were below the standard values. As a result of particle size analysis, the median diameter (d$_{50}$) of the tailings was in the range of 10 to 30 ${\mu}{\textrm}{m}$. The stable tailings slurry made up of 3 ${\mu}{\textrm}{m}$ in d$_{50}$ was prepared using Attrition Mill. The milling condition was 40 vol% in slurry concentration, 700 rpm in stirring speed, and 1 hour in milling time. PEI was added as dispersing agent. Concentrated slurry was extended to 3 times by foaming method. In the case of 3 times foamed slurry, the total and open porosity of ceramic supports sintered at 1,075$^{\circ}C$ for 90 minutes was about 80% and 72%, respectively. Pore size was in the range of 30∼350${\mu}{\textrm}{m}$. Therefore, the tailings could be recycled starting material for environmental materials such as macroporous ceramic support.

Rapid and Simple Analytical Method for Removing Patulin from Apple Juice Using Solid Phase Extraction (고체상 추출법(SPE: Solid Phase Extraction)을 이용한 국내 사과주스 중 Patulin 간편.신속 분석방법)

  • Yim, Jong-Gab;Jang, Hae-Won;Lee, Kwang-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.257-262
    • /
    • 2010
  • Patulin, a secondary metabolite of mold, is commonly found in rotten apples. Many countries regulate patulin at levels ranging from 30 to $50\;{\mu}g/L$. Most analytical methods for removing patulin from apple juice include liquid-liquid extraction (LLE), which is time and labor intensive. To replace the LLE method, a solid-phase extraction (SPE) method has been developed for apple juice and unfiltered apple juice. A portion of the test sample was applied to a macroporous copolymer cartridge and washed with 5 mL of 1% sodium bicarbonate, followed by 5 mL of 1% acetic acid. Patulin was eluted with 5 mL of 2% acetonitrile in anhydrous ethyl ether. The mobile phase was tetrahydrofuran in water (0.8:99.2) and was detected with a UV detector at 276 nm. Recoveries ranged from 95 to 101% in test samples, and the minimum detectable level was 30 ppb. Because this SPE method is fast, easy, reliable, and inexpensive, it could be applicable for companies or analytical agencies to analyze patulin concentrations in apple juice.

Effects of Solvent on the Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion (상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조에서의 용매의 효과)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung;Park, Jong Soon
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • Porous poly(L-lactic acid)(PLLA) scaffold membranes were prepared via. phase separation process. Chloroform, dichloromethane and 1,4-dioxane were used as solvent and, ethyl alcohol was used as non-solvent. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. The scaffold membranes obtained from the casting solutions with chloroform and with dichloromethane showed similar morphologies. They showed sponge-like porous structure with the pore size in the range of $3-10{\mu}m$ and, their porosities were in 50-80% range. Using 1,4-dioxane as solvent, nano-fibrous scaffold membranes with porosities over 80% were fabricated. When the polymer content in the solution with 1,4-dioxane was lowered to 4%, highly porous, macroporous and nano-fibrous scaffold membranes were obtained. The size of the macropore was tens of the microns and the porosity was around 90%. These results indicate that the solvent has significant effect on the scaffold membrane structure and, that scaffold membranes with various structures can be fabricated through phase separation method by choosing solvent and by controlling polymer concentration in the casting solution.

Study on Development of Horticultural Media Using Macroporous Calcium-Silicate Mineral (다공성규산칼슘계 화합물을 이용한 원예용 상토개발에 관한 연구)

  • Lee, Jong-Jin;Chang, Ki-Woon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 2001
  • The experiment was conducted to investigate the agricultural utility of macro-porous calcium-silicate rnineral(CellCaSi) as topsoil mixture, as well as to estimate as a soil conditioner. The bulk density of CellCaSi which is consisted of various particle sizes ranging from 1mm to 3.35mm was about $0.42g/cm^3$, and its maximum porosity was approximately 81.4%. We also investigate gerrnination rates for Cabbage and Lettuce to obtain the suitable mixing ratios of CellCaSi with topsoil. Among 4 different mixing ratios, the germination rates of ropsoil mixed with 10% of CellCaSi were 94.1% and 64.6% for Cabbage and Lettuce, respectively resulted in the mosr suitable for germination. The growth rates for Cabbage and Lettuce showed thar 10% and 20% of CellCaSi treatments signification influenced the fresh weight. To observe the adsorption capacity of CellCaSi, CellCaSi was treated with a chemical fertlizer(N:P:K=18:18:18). lncreasing the contents of N, P and K, the amounts of adsorption by CellCaSi for these element also increased. The most suitable types nutrient resources for growth condition of Cabbage, and Lettuce were Fer-1 and Fer-0.5.

  • PDF

Bone regeneration capacity of two different macroporous biphasic calcium materials in rabbit calvarial defect

  • Park, Jung-Chul;Lim, Hyun-Chang;Sohn, Joo-Yeon;Yun, Jeong-Ho;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.223-230
    • /
    • 2009
  • Purpose: Synthetic bone products such as biphasic calcium phosphate (BCP) are mixtures of hydroxyapatite (HA) and ${\beta}$-tricalcium phosphate (${\beta}$- TCP). In periodontal therapies and implant treatments, BCP provides to be a good bone reconstructive material since it has a similar chemical composition to biological bone apatites. The purpose of this study was to compare bone regeneration capacity of two commercially available BCP. Methods: Calvarial defects were prepared in sixteen 9-20 months old New Zealand White male rabbits. BCP with HA and ${\beta}$- TCP (70:30) and BCP with Silicon-substituted hydroxyapatite (Si-HA) and ${\beta}$-TCP (60:40) particles were filled in each defect. Control defects were filled with only blood clots. Animals were sacrificed at 4 and 8 week postoperatively. Histomorphometric analysis was performed. Results: BCP with HAand ${\beta}$- TCP 8 weeks group and BCP with Si-HA and ${\beta}$- TCP 4 and 8 weeks groups showed statistically significant in crease (P <0.05) in augmented area than control group. Newly formed bone area after 4 and 8 weeks was similar among all the groups. Residual materials were slightly more evident in BCP with HA and ${\beta}$- TCP 8 weeks group. Conclusions: Based on histological results, BCP with HA and ${\beta}$- TCP and BCP with Si-HA and ${\beta}$- TCP appears to demonstrate acceptable space maintaining capacity and elicit significant new bone formation when compared to natural bone healing in 4 and 8 week periods.

Separation of Fission Product Elements from Synthetic Dissolver Solutions of Spent Pressurized Water Reactor Fuels by $TBP/XAD-16/HNO_3$Extraction Chromatography ($TBP/XAD-16/HNO_3$추출 크로마토그래피에 의한 모의 사용후핵연료 용해용액 중 미량 핵분열생성물 원소의 분리)

  • Lee, Chang Heon;Choi, Kwang Soon;Kim, Jung Suk;Choi, Ke Chon;Jee, Kwang Yong;Kim, Won Ho
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • A study has been carried out on the extraction chromatographic separation of fission products from spent pressurized water reactor (PWR) fuels for inductively coupled plasma atomic emission spectrometric analysis. Impregnation capacity of tri-n-butyl phosphate (TBP), which is well known as an extractant in the field of uranium separation from various nuclear grade materials, on Amberlite XAD polymeric macroporous support materials was measured. Amberlite XAD-16 of which the surface area is the highest was selected as a support material because its TBP impregnation capacity was the largest in Amberlite XADs. Sorption behaviour of this TBP impregnated resin was investigated for the fission product elements using acidic solutions simulated for dissolver solutions of spent PWR fuels. The parameters affecting the performance of the separation system were optimized. The fission product elements studied excluding Pd and Ru were quantitatively recovered with the precision of less than 3.1%.

  • PDF

Comparison of Enzymatic Activity and Cleavage Characteristics of Trypsin Immobilized by Covalent Conjugation and Affinity Interaction (공유결합과 친화력결합에 의한 고정화 Trypsin의 효소역가와 절단특성 비교)

  • Jang, Dae-Ho;Seong, Gi-Hun;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.279-285
    • /
    • 2006
  • We investigated the effects of immobilization chemistry on the yield of immobilization and the bioactivity of the immobilized enzymes. Trypsin as a model protein and macroporous polymer beads(Toyopearl AF 650M, Tosho Co., Japan) was used as a model matrix. Four methods were used to immobilize trypsin; covalent conjugation by reductive amination(at pH 10.0 and pH 4.0) and affinity interaction via streptavidin-biotin, and double-affinity interaction via biotin-streptavidin-biotin system. The covalent conjugation immobilized $3{\sim}4$ mg/ml-gel, ca. 3-fold higher than the affinity method. However, the specific activity of the covalently(pH 10.0) and affinity-immobilized trypsin(via streptavidin-biotin) are ca. 37% and 50%, respectively, of that of the soluble enzyme(on the low-molecular-weight BAPNA substrate). When the molecular size of a substrate increased, the affinity-immobilized trypsin showed higher clavage activity on insulin and BSA. This result seemed to indicate the streptavidin-biotin system allowed more steric flexibility of the immobilized trypsin in its interaction with a substrate molecule. To confirm this, we studied the molecular flexibility of immobilized trypsin using quartz crystal microbalance-dissipation. Self-assembled monolayers were formed on the Q-sensor surface by aminoalkanethiols, and gultaraldehyde was attached to the SAMs. Trypsin was immobilized in two ways: reductive amination(at pH 10.0) and the streptavidin-biotin system. The dissipation shift of the affinity-immobilized trypsin was $0.8{\times}10^{-6}$, whereas that of the covalently attached enzyme was almost zero. This result confirmed that the streptavidin-biotin system allowed higher molecular flexibility. These results suggested that the bioactivity of the immobilized enzyme be strongly dependent on its molecular flexibility.