• 제목/요약/키워드: Macroalgae (MA)

검색결과 5건 처리시간 0.018초

까막전복(Haliotis discus) 치패용 EP사료내 어분과 해조류 대체원으로서 참치부산물분과 생미강의 효과 (Effects of Substituting Fish Meal and Macroalgae for Tuna Byproduct Meal and Rice Bran in Extruded Pellets Fed to Juvenile Abalone Haliotis discus (Reeve 1846))

  • 윤아영;김준;정해승;이기욱;조성환
    • 한국수산과학회지
    • /
    • 제51권4호
    • /
    • pp.376-382
    • /
    • 2018
  • We investigated the effect of replacing tuna byproduct meal (TBM) and rice bran (RB) with fish meal (FM) and macroalgae (MA) in extruded pellets (EP) supplied as a diet to juvenile Abalone Haliotis duscus in aquaculture. In total, 80,000 juvenile abalone were distributed among eight indoor raceways and supplied with one of four experimental diets. The control diet consisted of FM, fermented soybean meal, corn gluten meal and shrimp meal as protein sources, with wheat flour and dextrin as carbohydrate sources; the control diet also contained MA. In the FM50 diet, TBM was replaced with 50% FM. In the MA 50 diet, RB was replaced with 50% MA. The final diet, FM50+MA50, included TMB and RB in place of 50% FM and 50% MA. Abalone were fed to satiation with little food leftover for 16 weeks. Weight gain and specific growth rate of abalone fed the control diet were greater than those of abalone fed the FM50 and MA50 diets, but not different from those of abalone fed FM50+MA50 diet. The proximate composition of abalone soft body did not vary according to experimental diets. Based on these results, it appears that the traditional commercial diet for juvenile abalone, comprising FM and MA, could be replaced with one containing 50% TBM and 50% RB without any retardation of growth.

전복(Haliotis discus hannai) 용 배합사료내 오징어분 및 해조류 대체원으로서 대두박이 전복 치패의 성장과 체조성에 미치는 영향 (The Effects of Substituting Squid Meal and Macroalgae with Soybean Meal in a Commercial Diet on Growth and Body Composition of Juvenile Abalone Haliotis discus hannai)

  • 김병학;김희성;조성환
    • 한국수산과학회지
    • /
    • 제48권3호
    • /
    • pp.329-336
    • /
    • 2015
  • We examined the effect of substituting squid meal and macroalgae with soybean meal in a commercial diet on the growth and body composition of juvenile abalone Haliotis discus hannai. We randomly distributed 2310 juvenile abalone into 33 rectangular plastic containers and fed them five experimental diets in triplicate as follows. The control diet (Con) consisted of 12% squid meal, 8% corn gluten and 20% soybean meal as protein source, wherein 10% ${\alpha}$-starch, 20% wheat flour, and 5% dextrin were carbohydrate source. The experimental diets, 50% squid meal (SM50), 50% squid meal and 50% macroalgae (SM50+MA50), and 100% squid meal and 50% macroalgae (SM100+MA50) were substituted with the same respective amounts of soybean meal. The fifth experimental diet consisted of the control diet plus 1% diatom powder (DP). We prepared two domestic (Domestic A and B) and two imported (China and Japan) abalone feeds. Finally, we prepared Undaria and sea tangle. We found that the weight gain of abalone fed the Con, DP, and China and Japan diets was significantly greater than that of abalone fed Undaria and sea tangle. We conclude that the substituting squid meal and macroalgae with soybean meal in abalone feed has limited benefits, but supplementing diets with 1% diatom powder is effective in improving weight gain.

Inclusion effect of soybean meal, fermented soybean meal, and Saccharina japonica in extruded pellet for juvenile abalone (Haliotis discus, Reeve 1846)

  • Yun, Ahyeong;Kim, June;Jeong, Hae Seung;Lee, Ki Wook;Kim, Hee Sung;Kim, Pil Youn;Cho, Sung Hwoan
    • Fisheries and Aquatic Sciences
    • /
    • 제21권9호
    • /
    • pp.26.1-26.8
    • /
    • 2018
  • Inclusion effect of soybean meal (SBM) and fermented SBM (FSM) in extruded pellet for juvenile abalone (Haliotis discus) was compared in abalone farm. Dietary inclusion effect of the combined macroalgae (MA) (Undaria pinnatifida and Hizikia fusiforme) and a single Saccharina japonica on abalone was also compared. Three thousand six hundred juvenile abalone were purchased from a private hatchery and acclimated to the experimental conditions for 2 weeks. Six 5-ton flow-through raceway tanks were used, and abalone were randomly distributed into tanks (n = 600 per tank). Three experimental diets were prepared in duplicate. Fish meal, FSM, corn gluten meal, and shrimp meal and wheat flour and dextrin were used as the protein and carbohydrate sources, respectively, in the FSM diet. MA was also included in the FSM diet. FSM and MA in the FSM diet were substituted with SBM at the expense of wheat flour and S. japonica, referred to as the SBM and SJ diets. The experimental diets were pelletized by an extruded pelleter. Water stability of nutrients in the experimental diets was monitored at 12, 24, and 48 h after seawater immersion. The experimental diets were fed to abalone once a day to satiation with a little leftover for 120 days. The retained crude protein and lipid and ash content of the extruded pellets were changed over all period of time. Weight gain and specific growth rate (SGR) of abalone fed the SBM diet were greater than those of abalone fed the FSM and SJ diets. Weight gain and SGR of abalone fed the SJ diet were also greater than those of abalone fed the FSM diet. The longest shell length, widest shell width, highest shell height, and greatest soft body weight were obtained in abalone fed the SBM diet, followed by the SJ and FSM diets. Proximates of the soft body of abalone were not different among the experimental diets. In conclusion, SBM was a superior protein source to FSM in extruded pellet for growth performance of abalone. Dietary inclusion of a single S. japonica was superior to the combined inclusion of U. pinnatifida and H. fusiforme in the production of abalone.

Physiological and transcriptome analysis of acclimatory response to cold stress in marine red alga Pyropia yezoensis

  • Li-Hong Ma;Lin Tian;Yu-Qing Wang;Cong-Ying Xie;Guo-Ying Du
    • ALGAE
    • /
    • 제39권1호
    • /
    • pp.17-30
    • /
    • 2024
  • Red macroalga Pyropia yezoensis is a high valuable cultivated marine crop. Its acclimation to cold stress is especially important for long cultivation period across winter in coasts of warm temperate zone in East Asia. In this study, the response of P. yezoensis thalli to low temperature was analyzed on physiology and transcriptome level, to explore its acclimation mechanism to cold stress. The results showed that the practical photosynthesis activity (indicated by ΦPSII and qP) was depressed and pigment allophycocyanin content was decreased during the cold stress of 48 h. However, the Fv/Fm and non-photochemical quenching increased significantly after 24 h, and the average growth rate of thalli also rebounded from 24 to 48 h, indicating a certain extent of acclimation to cold stress. On transcriptionally, the low temperature promoted the expression of differentially expressed genes (DEGs) related to carbohydrate metabolism and energy metabolism, while genes related to photosynthetic system were depressed. The increased expression of DEGs involved in ribosomal biogenesis and lipid metabolism which could accelerate protein synthesis and enhance the degree of fatty acid unsaturation, might help P. yezoensis thallus cells to cope with cold stress. Further co-expression network analysis revealed differential expression trends along with stress time, and corresponding hub genes play important roles in the systemic acquired acclimation to cold stress. This study provides basic mechanisms of P. yezoensis acclimation to cold temperature and may aid in exploration of functional genes for genetic breeding of economic macroalgae.

Molecular cloning and expression analysis of the first two key genes through 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway from Pyropia haitanensis (Bangiales, Rhodophyta)

  • Du, Yu;Guan, Jian;Xu, Ruijun;Liu, Xin;Shen, Weijie;Ma, Yafeng;He, Yuan;Shen, Songdong
    • ALGAE
    • /
    • 제32권4호
    • /
    • pp.359-377
    • /
    • 2017
  • Pyropia haitanensis (T. J. Chang et B. F. Zheng) N. Kikuchi et M. Miyata is one of the most commercially useful macroalgae cultivated in southeastern China. In red algae, the biosynthesis of terpenoids through 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway can produce a direct influence on the synthesis of many biologically important metabolites. In this study, two genes of cDNAs, 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and 1-deoxy-D-xylulose-5-phosphate reductase (DXR), which encoding the first two rate-limiting enzymes among MEP pathway were cloned from P. haitanensis. The cDNAs of P. haitanensis DXS (PhDXS) and DXR (PhDXR) both contained complete open reading frames encoding polypeptides of 764 and 426 amino acids residues, separately. The expression analysis showed that PhDXS was significant differently expressed between leafy thallus and conchocelis as PhDXR been non-significant. Additionally, expression of PhDXR and its downstream gene geranylgeranyl diphosphate synthase were both inhibited by fosmidomycin significantly. Meanwhile, we constructed types of phylogenetic trees through different algae and higher plants DXS and DXR encoding amino acid sequences, as a result we found tree clustering consequences basically in line with the "Cavalier-Smith endosymbiotic theory." Whereupon, we speculated that in red algae, there existed only complete MEP pathway to meet needs of terpenoids synthesis for themselves; Terpenoids synthesis of red algae derivatives through mevalonate pathway came from two or more times endosymbiosis of heterotrophic eukaryotic parasitifer. This study demonstrated that PhDXS and PhDXR could play significant roles in terpenoids biosynthesis at molecular levels. Meanwhile, as nuclear genes among MEP pathway, PhDXS and PhDXR could provide a new way of thinking to research the problem of chromalveolata biological evolution.