• 제목/요약/키워드: Machining variables

검색결과 107건 처리시간 0.026초

다결정 다이아몬드 공구를 이용한 Al-Mg계 합금의 미소선삭가공특성에 관한 연구 (A Study on the Micro Turning Machinability of A1-Mg Alloy Using Polycrystalline Diamond Tool)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.122-130
    • /
    • 1996
  • In this study, machinability of some aluminum-magnesium alloy are experimentally investigated using polycrystalline diamond tool with turning, and evaluated some independent cutting variables affected micrometal cutting characteristics as cutting force, specific cutting resistance, shear angles. To know the effect of cutting parameters of single point diamond machining, experiments were performed to measure cutting forces for high speed turning of aluminum alloy 6061-T6, SM45C and FC20 with poly- crystalline diamond and coated cemented carbide tool. Independent cutting variables were changed to a variety of cutting speed, feed rate, rake angles, material properties of workpiece and tool. Futhermore. Some useful informations are obtained in this study can guide micro metal cutting of aluminum alloy with diamond tool.

  • PDF

열연강판의 드릴링시 공구의 이상상태 검출에 관한 연구 (A Study on the Detection of the Abnormal Tool State in Drilling of Hot-rolled High Strength Steel)

  • 신형곤;김민호;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.888-891
    • /
    • 2000
  • Drilling is one of the most important operations in machining industry and usually the most efficient and economical method of cutting a hole in metal. From automobile parts to aircraft components, almost every manufactured product requires that holes are to be drilled for the purpose of assembly, creation of fluid passages, and so on. It is therefore desirable to monitor drill wear and hole quality changes during the hole drilling process. One important aspect in controlling the drilling process is drill wear status monitoring. With the monitoring, we may decide on optimal timing for tool change. The necessity of the detection of tool wear, fracture and the abnormal tool state has been emphasized in the machining process. Accordingly, this paper deals with the cutting characteristics of the hot-rolled high strength steels using common HSS drill. The performance variables include drill wear data obtained from drilling experiments conducted on the workpiece. The results are obtained from monitoring of the cutting force and Acoustic Emission (AE) signals, and from the detection of the abnormal tool state with the computer vision system.

  • PDF

퍼지논리를 이용한 수평 머시닝 센터의 열변형 오차 모델링 (Thermal Error Modeling of a Horizontal Machining Center Using the Fuzzy Logic Strategy)

  • 이재하;이진현;양승한
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2589-2596
    • /
    • 2000
  • As current manufacturing processes require high spindle speed and precise machining, increasing accuracy by reducing volumetric errors of the machine itself, particularly thermal errors, is very important. Thermal errors can be estimated by many empirical models, for example, an FEM model, a neural network model, a linear regression model, an engineering judgment model, etc. This paper discusses to make a modeling of thermal errors efficiently through backward elimination and fuzzy logic strategy. The model of a thermal error using fuzzy logic strategy overcomes limitation of accuracy in the linear regression model or the engineering judgment model. It shows that the fuzzy model has more better performance than linear regression model, though it has less number of thermal variables than the other. The fuzzy model does not need to have complex procedure such like multi-regression and to know the characteristics of the plant, and the parameters of the model can be mathematically calculated. Also, the fuzzy model can be applied to any machine, but it delivers greater accuracy and robustness.

반응표면법을 활용한 티타늄합금(Ti-6A1-4V)의 밀링 가공조건 최적화에 관한 연구 (Optimization of Machining Conditions in Milling of Titanium Alloy (Ti-6A1-4V) Using the Response Surface Method)

  • 김종민;구준영;김정석;전차수
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.60-67
    • /
    • 2019
  • Recently, lightweight materials such as Ti alloys have been used increasingly in the aerospace and high-tech industries for weight loss and fuel efficiency. Because of built-up edges and workpiece deflection due to low stiffness, the Ti alloys have poor machinability. In our study, systematic experiments were conducted to investigate the milling characteristics of the Ti alloy (Ti-6A1-4V) with endmills. The independent variables in the experiment were spindle speed, feed per tooth, and axial depth. Cutting force, acceleration RMS, and surface roughness were measured. Using the response surface method, the optimal cutting conditions were analyzed to improve machining quality and productivity.

Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid.;Bouziane, Abderrahim
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.395-405
    • /
    • 2019
  • In the present work, the effects of cutting parameters on surface roughness parameters (Ra), tool wear parameters (VBmax), tool vibration (Vy) and material removal rate (MRR) during hard turning of AISI 4140 steel using coated carbide tool have been evaluated. The relationships between machining parameters and output variables were modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to quantify the effect of cutting parameters on the studied machining parameters and to check the adequacy of the mathematical model. Additionally, Multi-objective optimization based desirability function was performed to find optimal cutting parameters to minimize surface roughness, and maximize productivity. The experiments were planned as Box Behnken Design (BBD). The results show that feed rate influenced the surface roughness; the cutting speed influenced the tool wear; the feed rate influenced the tool vibration predominantly. According to the microscopic imagery, it was observed that adhesion and abrasion as the major wear mechanism.

An Application of Fuzzy Logic with Desirability Functions to Multi-response Optimization in the Taguchi Method

  • Kim Seong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권3호
    • /
    • pp.183-188
    • /
    • 2005
  • Although it is widely used to find an optimum setting of manufacturing process parameters in a variety of engineering fields, the Taguchi method has a difficulty in dealing with multi-response situations in which several response variables should be considered at the same time. For example, electrode wear, surface roughness, and material removal rate are important process response variables in an electrical discharge machining (EDM) process. A simultaneous optimization should be accomplished. Many researches from various disciplines have been conducted for such multi-response optimizations. One of them is a fuzzy logic approach presented by Lin et al. [1]. They showed that two response characteristics are converted into a single performance index based upon fuzzy logic. However, it is pointed out that information regarding relative importance of response variables is not considered in that method. In order to overcome this problem, a desirability function can be adopted, which frequently appears in the statistical literature. In this paper, we propose a novel approach for the multi-response optimization by incorporating fuzzy logic into desirability function. The present method is illustrated by an EDM data of Lin and Lin [2].

실험계획법을 이용한 엔드밀 가공 시 최대가공온도와 표면조도에 미치는 가공조건에 관한 연구 (A Study on the Working Condition Effecting on the Maximum Working Temperature and Surface Roughness in Side Wall End Milling Using Design of Experiment)

  • 홍도관;안찬우;백황순;최석창;박일수
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.46-53
    • /
    • 2009
  • To find the working condition is one of the important factors in precision machining. In this study, we analyzed maximum working temperature by infra-red camera and surface roughness in side wall end milling using design of experiment (DOE): RSM(response surface methodology), ANOM(analysis of means) and ANOVA(analysis of variance) by table of orthogonal array. ANOM and ANOVA are well adapted to select sensitivity of design variables for maximum working temperature and surface roughness. The effective design variables and their levels should be determined using ANOM, ANOVA. RSM is presented 2nd order approximation polynomial of maximum working temperature and surface roughness is composed with design variables. Therefore, it is expected that the proposed procedure using design of experiment : table of orthogonal array, ANOM, ANOVA and RSM can be easily utilized to solve the problem of working condition.

  • PDF

천체망원경용 비구면 반사경 표면조도 향상을 위한 최적연삭변수 수치결정모델 (GRINDING OPTIMIZATION MODEL FOR NANOMETRIC SURFACE ROUGHNESS FOR ASPHERIC ASTRONOMICAL OPTICAL SURFACES)

  • 한정열;김석환;김건희;한인우;양순철
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권1호
    • /
    • pp.13-20
    • /
    • 2005
  • 지상 및 우주 천체 망원경용 비구면 반사경면 초기 제작공정에는 고정입자 휠을 사용하는 연삭이 있다. 본 연구에서는 매 연삭 가공 이전에 설정한 목표 표면조도를 달성할 수 있도록 입력 연삭변수들을 결정하고, 표면 가공오차를 추적하며 , 가공 경과시간을 최소화하는 새로운 연삭공정을 개발하였다. 특별히 이 공정 기법은 이전 연삭 가공 작업시 까지 수집된 입력 변수 및 가공 결과 표면조도 자료를 다 변수 회귀분석 방법에 대입하여 목표 표면조도에 따른 최적 연삭가공 입력변수를 매 가공 작업 시 진화적으로 제시하는 지능형 공정 조절 능력을 갖추고 있다. 개발된 공정기법과 초정밀 컴퓨터 수치제어 연삭기를 사용하여 $96.1\~65.0nm(Ra)$ 범위 의 목표 표면조도를 갖는 제로듀어 소재에 대하여 10회 가공 실험을 수행 한 결과 $=-0.906{\pm}3.38(\sigma)nm(Ra)$의 가공 정밀도를 달성하여, 지능형 연삭공정의 효율을 입증하였다. 이러한 연구결과는 천체망원경용 반사경면 연삭 가공 시 정성적 경험에 의존하여 가공하는 기존 기술을 극복하고 정량적 수치 모형에 의하여 가공소요시간 최소화 및 나노미터 급 표면조도를 달성하는 진화형 공정 최적화 기술의 확립이라는 의의를 가지고 있다.

정밀회전체의 언밸런스 변화에 따른 진동과 Al6061 알루미늄 합금 가공에 미치는 영향 (Effect of Unbalance on Vibration and Machining of Al6061 Aluminum Alloy in Precision Rotator)

  • 김민수;김정태;박석우;정동욱;최선호;구본흔;윤상환
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.76-82
    • /
    • 2021
  • At present, with the development of precision instruments, high dimensional accuracy of workpieces must be ensured. In particular, for the aluminum alloys used in automobiles, the surface roughness of the workpiece is extremely important. The dimensional accuracy and surface roughness of the workpiece is considerably affected by the rotational accuracy of the rotor. Therefore, to enhance the rotational accuracy, various variables such as those related to the components such as bearings, motors, and end mills, rotational speeds, and vibrations must be considered. In this study, the difference in the quality of the workpieces was compared considering the weight imbalance and rotational speed as variables.

2자유도 제어기를 이용한 CNC볼엔드밀링 공정에서 절삭력과 위치의 동시제어 (Simultaneous Control of Cutting Force and Position Using Two Degree-of- Freedom Controller in CNC Ball-end Milling Process)

  • 양호석;심영복;이건복
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.536-542
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control and position control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant feed speed. The second is a simultaneous control of feed and spindle speed. The last performs a position control under the constant cutting force. Those are confirmed to work properly. Especially the latter shows a faster response.

  • PDF