• 제목/요약/키워드: Machining variables

검색결과 107건 처리시간 0.027초

최적 가공 조건 선정을 위한 300mm 웨이퍼 폴리싱의 가공특성 연구 (The Study on the Machining Characteristics of 300mm Wafer Polishing for Optimal Machining Condition)

  • 원종구;이정택;이은상
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.1-6
    • /
    • 2008
  • In recent years, developments in the semiconductor and electronic industries have brought a rapid increase in the use of large size silicon wafer. For further improvement of the ultra precision surface and flatness of Si wafer necessary to high density ULSI, it is known that polishing is very important. However, most of these investigation was experiment less than 300mm diameter. Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study reports the machining variables that has major influence on the characteristic of wafer polishing. It was adapted to polishing pressure, machining speed, and the slurry mix ratio, the optimum condition is selected by ultra precision wafer polishing using load cell and infrared temperature sensor. The optimum machining condition is selected a result data that use a pressure and table speed data. By using optimum condition, it achieves a ultra precision mirror like surface.

초소형 밀링머신 개발 (The Development of Micro Milling Machine)

  • 황준;정의식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1171-1174
    • /
    • 2005
  • Manufacturing capability at the micro or nano scale production field is requested strongly in view of parts and product miniaturization. Miniaturized parts and products will introduce lots of benefits in terms of high precision functionality and low energy consumption. This paper presents the results of micro milling machine tool development for micro machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Performance evaluation through machining has been tested and discussed for achievable machining characteristics.

  • PDF

알루미늄 합금의 성분원소가 절삭 특성에 미치는 영향 (Effect of Machining Characteristics Aluminium Alloy added Composition Elements)

  • 채왕석;김경우;최현민;김동현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.857-860
    • /
    • 1997
  • The purpose of this research was to study the influence of machining characteristics for aluminum alloys. The effect of metallic microstructural variables on the measures of machinability of aluminum alloys has no been adequately investigated. Machining Characteristics are influenced significantly by mechanical characteristics, composition and structure of material etcs. For improvement of machining characteristics, various studies are reported. In this paper, composition elements add to aluminum alloys within the limit of sustaining mechanical characteristics of metallic material. We have analyzed dynamic characteristics of cutting resistance, tensile strength value, hardness value etcs.

  • PDF

시스템적 접근을 통한 레이저 미세가공 설계 프로세스 개발에 관한 연구 (A Study on Application of Systems Approach for Laser Micro Machining Design Process)

  • 문성욱;박영원;남기중
    • 한국레이저가공학회지
    • /
    • 제10권3호
    • /
    • pp.15-24
    • /
    • 2007
  • In this paper laser micromachining system design process for commercialization is suggested. The constructed system design process is properly adjusted for laser micromachining area after tailoring engine process of system engineering process such as requirement analysis, functional analysis and allocation, system synthesis and system optimization process. In the current laser machining system design, system components and specifications are determined on the basis of experimental experience which a laser is being used in machining some materials as well as the current machining and research trend. In this paper, however, systematic process is suggested in addition to experimental experience, which the laser and system components and their specifications are decided in the process of definition of functional requirements and engine design variables of system to satisfy the customer's requirements.

  • PDF

미세구멍 가공용 방전 가공기의 개발 및 시험 (The development and test of the electro-discharge machine for micro-drilling)

  • 백형창;김병희;장인배
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.1-7
    • /
    • 1999
  • This is the pre-study to pile up the basic technique for the electro-discharge machining in the field of micro-drilling. The machined chips are flowed out from the machining area by the flow arisen from the high speed rotation of the electrode. The cylindrical shape electrode, whose diameter is 0.5mm, is clamped by the three point clamping type clamper and the clamper is attached at the front shaft of the high speed rotating DC motor. The current for machining is controlled by pulse width modulation technique and the machining conditions such as frequency and duty ratio are changed to find out the effect of the variables for machined results.

  • PDF

절삭가공의 Neural Network 모델을 위한 ACO 및 PSO의 응용 (Application of Ant Colony Optimization and Particle Swarm Optimization for Neural Network Model of Machining Process)

  • 오수철
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.36-43
    • /
    • 2019
  • Turning, a main machining process, is a widespread process in metal cutting industries. Many researchers have investigated the effects of process parameters on the machining process. In the turning process, input variables including cutting speed, feed, and depth of cut are generally used. Surface roughness and electric current consumption are used as output variables in this study. We construct a simulation model for the turning process using a neural network, which predicts the output values based on input values. In the neural network, obtaining the appropriate set of weights, which is called training, is crucial. In general, back propagation (BP) is widely used for training. In this study, techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) as well as BP were used to obtain the weights in the neural network. Particularly, two combined techniques of ACO_BP and PSO_BP were utilized for training the neural network. Finally, the performances of the two techniques are compared with each other.

머시닝센터를 활용한 알루미늄합금의 마찰교반용접 특성 분석 (Analysis of friction stir welding characteristics of aluminum alloy using machining center)

  • 승영춘;박경도;이춘규
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.46-51
    • /
    • 2020
  • The purpose of this study was to analyze the change in tensile strength characteristics of the weld when the welding speed and rotational speed of the tool, which are representative variables of the friction stir welding process. The equipment used in the experiment was Machining Center No. 5. The material used in the experiment is an AA6061-T6 alloy, and a rolled plate with a thickness of 2mm was used. Two experimental variables were selected, the welding speed of the tool and the rotational speed of the tool. The experimental conditions were selected in the range in which a healthy weld could be obtained through a preliminary experiment. The welding speed of the tool was increased to 100mm/min, 200mm/min, and 300mm/min, and the rotational speed of the tool was increased to 1000rpm, 2000rpm, and 3000rpm. As a result of the experiment, the tensile strength increased as the rotational speed of the tool changed at each tool welding speed. In addition, as the welding speed of the tool increased, the tensile strength of the weld was increased. The condition with the highest tensile strength of the weld was found to be a tool feed speed of 300 mm/min and a tool rotation speed of 3000rpm.

볼엔드밀 절삭공정의 절삭력 디지털 제어

  • 이천환;이건복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.198-203
    • /
    • 1992
  • There are two important variables in machining process control, which are feed and cutting speed. It is possible to improve the machining accuracy and the productivity by maintaining the optimal feed and cutting speed. IN this work, a controller is designed to achieve on-line cutting force control based on the modeling of cutting process dynamics established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and the second is spindle speed control under the constant feed. Finally, both are proved to work properly through simulation and experimentation.

지식기반 시스템을 이용한 CNC 가공교육 (Education of CNC Machining Using Knowledge based System)

  • 김문기;이장묵
    • 한국실천공학교육학회논문지
    • /
    • 제2권1호
    • /
    • pp.58-63
    • /
    • 2010
  • 본 연구는 지식기반 시스템을 구축 및 활용하여 CNC 가공교육을 효율적으로 하고자하는 데에 그 목적을 둔다. 프로그램은 각종 교육, 교수방법론 및 교수매체 등을 기반으로 하고, 컴퓨터만 있다면 어디서든 교육이 가능하도록 접근성이 용이하게 구축한다. 본 시스템은 CNC 선반 및 머시닝센터 가공 전반에 대한 내용을 포함하고, 초보자의 접근이 용이하며 단계별 학습이 되도록 구성한다. 가공을 위한 재료, 공구 또는 형상에 따른 여러 절삭 조건들도 검토하고 분석하며, 비주얼 베이직 언어를 이용하여 프로그램을 구성 및 개발한다. 본 시스템은 실제 절삭가공에 절삭조건을 참고하기를 원하는 초보 훈련생뿐만 아니라 CNC 가공 교육을 처음 배우기를 원하는 초보자들에게 많은 도움을 줄 수 있으리라 기대된다.

  • PDF

전압 주파수와 파형 폭 변화에 따른 유리의 미세 전해 방전 가공 성능에 대한 실험 (The Experiment on the effect of variations of voltage frequency and duty r on the electrochemical discharge machining of Pyrex glass)

  • 이정용;안유민;안시홍;박치현;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3307-3309
    • /
    • 1999
  • Electrochemical discharge machining (ECDM) is a very recent technique in the fabrication of the micro-electro-mechanical system ( MEMS ) devices. This paper presents the experimental results of the machining of micro-holes on pyrex glass substrates by use of ECDM. Electrolyte is used with a KOH aqueous solution, cathode with copper, anode with platinum, and tool feed system is applied with gravity feed system. Already established experimental results were taken under the condition of constant voltage frequency. However in this paper, the effect of variation of the voltage frequency and duty ratio is considered. In this experiment, it is measured the ECDM performances with variation of the voltage frequency and duty ratio under the conditions of constant other machining variables. ECDM performances are described by the hole depth, and the top hole diameter.

  • PDF