• Title/Summary/Keyword: Machining quality

Search Result 590, Processing Time 0.024 seconds

Real-Time Prediction of Electrode Wear for the Small Hole Pass-Through by EDM-drill (방전 드릴을 이용한 미세 홀 관통 공정의 전극 소모량 실시간 예측)

  • Choi, Yong-Chan;Huh, Eun-Young;Kim, Jong-Min;Lee, Cheol-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.268-274
    • /
    • 2013
  • Electric discharge machining drill (EDM-drill) is an efficient process for the fabrication of micro-diameter deep metal hole. As there is non-physical contact between tool (electrode) and workpiece, EDM-drill is widely used to machine the hard machining materials such as high strength steel, cemented carbide, titanium alloys. The electro-thermal energy forces the electrode to wear out together with the workpiece to be machined. The electrode wear occurs inside of a machining hole. and It causes hard to monitor the machining state, which leads the productivity and the quality to decrease. Thus, this study presents a methodology to estimated the electrode wear amount while two coefficients (scale factor and shape factor) of the logarithmic regression model are evaluated from the experiment result. To increase the accuracy of estimation model, the linear transformation method is adopted using the differences of initial electrode wear differences. The estimation model is verified through experiment. The experimental result shows that within minute error, the estimation model is able to predict accurately.

Development of Diagnosis System for Intelligent High-Speed Micro-Machining and Evaluation of Micro-Machining Characteristics (고속.지능형 마이크로머시닝을 위한 진단시스템 및 특성평가)

  • 김흥배;이우영;최성주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.993-998
    • /
    • 1997
  • The advanced technology of micro-machining is starting to penetrate our lives. This technology, with which it is possible to make micro-structures by means of processing on the order of nm (micrometer = 1/1,000 mm) or less, is realizing machines that were only part of our wildest imagination. However, the fact is that many issues remain in the quest for a variety of applications. With the advent of computing technologies, information technologies, and telecommunications technologies, we foresee the need for new approaches in design, process, and the use of materials, technologies, and people in a globalized manufacturing enterprise. A new thinking paradigm is needed to focus on quality of service on the products we design and manufacture. Factories in different regions need to be co-ordinated through use of the state-of-the-art information on productivity, diagnostics, and service evaluation of manufacturing systems could be shared among different locations and partners. In this research, We develope the internet based Diagnosis system for micro machining and evaluate its characteristics by using mechatronic sensor like Dynamometer, acoustic emission, Acceleration sensor, micro phone, vision, infra-red thermometer.

  • PDF

Spindle Speed Optimization for High-Efficiency Machining in Turning Process (선삭 공정에서의 고능률 가공을 위한 주축 회전수의 최적화)

  • Chol, Jae-Wan;Kang, You-Gu;Kim, Seok-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.138-145
    • /
    • 2009
  • High-efficiency and high-quality machining has become a fact of life for numerous machine shops in recent years. And high-efficiency machining is the most significant tool to enhance productivity. In this study, to achieve high-efficiency machining in turning process, a spindle speed optimization method was proposed based on a cutting power model. The cutting force and power were estimated from the cutting parameters such as specific cutting force, feed, depth of cut, and spindle speed. The time delay due to the acceleration or deceleration of spindle was considered to predict a more accurate machining time. Especially, the good agreement between the predicted and measured cutting forces showed the reliability of the proposed optimization method, and the effectiveness of the proposed optimization method was demonstrated through the simulation results associated with the productivity enhancement in turning process

Development of New Rapid Prototyping System Performing both Deposition and Machining (II) (적층과 절삭을 복합적으로 수행하는 새로운 개념의 판재 적층식 쾌속 시작 시스템의 개발(II) - 공정계획 시스템 -)

  • Heo, Jeong-Hun;Lee, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2235-2245
    • /
    • 2000
  • The necessity of using rapid prototyping(RP) for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy, materials, aid cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed. For the new hybrid RP process to maintain the same degree of process automation as in currently available processes like SLA or FDNI, a sophisticated process planning system is developed. In the process planner, CAD models(STEP AP203) are partitioned into 3D manufacturable volumes called 'Ueposition feature segment"(DFS) after machining features called "machining feature segmenf'(MFS) are extracted from the initial CAD model. Once MFS and DFS are identified, the process planner arranges them into a chain of processes and automatically generates machining information for each DFS and MFS. The goal of this paper is to present a framework for a process planning system for hybrid RP processes and to outline the geometric algorithms involved in developing such an environment.

A Study on Surface roughness in High speed face milling machining of Al2024 (Al2024의 고속 정면밀링 가공에서 표면 거칠기에 관한 연구)

  • Jang, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.603-608
    • /
    • 2014
  • In many manufacturing such as the components of airplane and automobile, aluminum alloys(Al2024) which remarkable in low specific gravity and high strength have been utilized effectively. Face milling machining technology for surface roughness quality of workpiece has been applied in these fields. A face milling machining with chamfered throw away type insert tip can produce a perfect flat surface only in theory. But It is impossible because of many unwanted factors, namely, cutting temperature, plastic deformation, dynamic effect, etc. In this paper, experimental investigations are performed to improve surface roughness after high speed machining of Al2024 using qualified face milling cutter body for high speed machining.

A Study on the Characteristics on Ultra Precision Machining of HMD Optical System (Head Mounted Display 광학계 초정밀 가공특성에 관한 연구)

  • Yang S.C.;Kim G.H.;Kim Hyo-Sik;Sin Hyeon-Su;Kim Myeong-Sang;Won J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.184-187
    • /
    • 2005
  • This paper is described about the technique of ultra-precision machining for optical parts in HMD system. Machining technique for PMMA and BK7 with single point diamond turning machining is reported in this paper. The main factors influencing on the machined surface quality are discovered and regularities of machining process are drawn. The purpose of our research is to find the optimum machining conditions fur cutting of PMMA and grinding of BK7. Also, apply the SPDTM technique to the manufacturing of ultra precision optical components of HMD system. Aspheric PMMA lens without a polishing process, the surface roughness of 5 nm Ra, and the form error of ${\lambda}/2\;({\lambda}=632.8nm)$ for reference curved surface 30 mm has been required.

  • PDF

Nano-surface Machining Technology of Tungsten Carbide Blade for MLCC Cutting Process (MLCC 절단용 초경합금 칼날의 나노표면 가공 기술)

  • Kang, Byung-Ook;Shin, Gun-hwi;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.41-46
    • /
    • 2019
  • The purpose of this study is to examine and propose a high quality blade manufacturing method by applying ELID grinding technology to machining the tungsten carbide blade edge for MLCC sheet cutting. In this study, experiments are performed according to the abrasive type of grinding wheel, grinding method and grinding direction using the non-stop continuous dressing ELID grinding technology. By comparing and analyzing the chipping phenomena and surface roughness of both the blade grinding surface and the processed surface, a method for machining the tungsten carbide blade for cutting MLCC sheet is proposed. From the analysis of the surface roughness and chipping phenomena, it is confirmed that the use of diamond abrasive is advantageous for the blade machining. In addition, it succeeds in the machining of $6{\mu}m$ fine blade without any chipping, by using the grinding wheel #4000 with the diamond abrasive.

Characteristics of Material Properties and Machining Surface in Electrical Discharge Machining of Ti2AlN and Ti2AlC Materials (Ti2AlN과 Ti2AlC 소결체의 마이크로 방전가공에서 재료물성에 따른 가공표면 특성)

  • Choi, Eui-Song;Lee, Chang-Hoon;Baek, Gyung-Rae;Kim, KwangHo;Kang, Myung Chang
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.163-168
    • /
    • 2015
  • Ti alloys are extensively used in high-technology application because of their strength, oxidation resistance at high temperature. However, Ti alloys tend to be classified very difficult to cut material. In this paper, The powder synthesis, spark plasma sintering (SPS), bulk material properties such as electrical conductivity and thermal conductivity are systematically examined on $Ti_2AlN$ and $Ti_2AlC$ materials having most light-weight and oxidation resistance among the MAX phases. The bulk samples mainly consisted of $Ti_2AlN$ and $Ti_2AlC$ materials with density close to theoretical value were synthesized by a SPS method. Machining characteristics such as machining time, surface quality are analyzed with measurement of voltage and current waveform according to machining condition of micro-electrical discharge machining with micro-channel shape.

A Study on Improvement of Surface Roughness for High Speed Machining (고속가공의 표면거칠기 향상에 관한 연구)

  • Jung Jong-Yun;Ko Tae Jo;Lee Choon Man;Chung Won Jee;Cho Haeyoung
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.439-444
    • /
    • 2002
  • Competitive power in manufacturing industries mainly depends on production time and qualify of products. The main issue for achieving this goal is to build high speed and super accuracy machine. The machine has been developed in the aspect of hardware. However, applications in high speed machining is not sufficient to give solutions to industries in machining. This research presents a method to improve surface roughness adopting experimental design. This research finds experimental factors which have great impact on surface roughness. From the experiments cutting conditions are found for better quality of machining.

  • PDF

Development of the Automatic Machining Technology for Boat's Wooden Patterns (레저보트 목형가공 자동화에 관한 연구)

  • Kim, Seong-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.174-179
    • /
    • 2007
  • The cutting automation of boat's wooden pattern is strongly required to improve the productivity and quality of boats in leisure boat industry. This paper is concerned with the development of wooden pattern machining technology by the machining center. The leisure boat is designed with a 3 dimensional design s/w. The NC cutting data are generated in a CAM s/w and are verified using verification s/w. The cutting forces are monitored to analyse the cutting process. The surface characteristics of machined surface are investigated at various cutting conditions such as spindle speed, feed speed, the cutting direction of wood, and wood material.