DOI QR코드

DOI QR Code

Characteristics of Material Properties and Machining Surface in Electrical Discharge Machining of Ti2AlN and Ti2AlC Materials

Ti2AlN과 Ti2AlC 소결체의 마이크로 방전가공에서 재료물성에 따른 가공표면 특성

  • Choi, Eui-Song (Graduate School of Convergence Science, Pusan National University) ;
  • Lee, Chang-Hoon (Graduate School of Convergence Science, Pusan National University) ;
  • Baek, Gyung-Rae (Graduate School of Convergence Science, Pusan National University) ;
  • Kim, KwangHo (Hybrid Interface Materials, Global Frontier, Pusan National University) ;
  • Kang, Myung Chang (Graduate School of Convergence Science, Pusan National University)
  • 최의성 (부산대학교 융합학부 하이브리드소재응용전공) ;
  • 이창훈 (부산대학교 융합학부 하이브리드소재응용전공) ;
  • 백경래 (부산대학교 융합학부 하이브리드소재응용전공) ;
  • 김광호 (하이브리드 인터페이스기반 미래소재 글로벌프론티어 연구단) ;
  • 강명창 (부산대학교 융합학부 하이브리드소재응용전공)
  • Received : 2015.06.04
  • Accepted : 2015.06.20
  • Published : 2015.06.28

Abstract

Ti alloys are extensively used in high-technology application because of their strength, oxidation resistance at high temperature. However, Ti alloys tend to be classified very difficult to cut material. In this paper, The powder synthesis, spark plasma sintering (SPS), bulk material properties such as electrical conductivity and thermal conductivity are systematically examined on $Ti_2AlN$ and $Ti_2AlC$ materials having most light-weight and oxidation resistance among the MAX phases. The bulk samples mainly consisted of $Ti_2AlN$ and $Ti_2AlC$ materials with density close to theoretical value were synthesized by a SPS method. Machining characteristics such as machining time, surface quality are analyzed with measurement of voltage and current waveform according to machining condition of micro-electrical discharge machining with micro-channel shape.

Keywords

References

  1. H. Miura: J. Korean Powder Metall. Inst., 5 (2013) 323.
  2. J. Y. Heo, Y. K. Jeong, M. C. Kang and A. Busnaina: J. Korean Powder Metall. Inst., 4 (2013) 285 (Korean).
  3. S. Sun, M. Brandt, S. Palanisamy and Matthew S. Dargusch: J. Mater. Process. Tech., 221 (2015) 243. https://doi.org/10.1016/j.jmatprotec.2015.02.017
  4. Y. Liu, Z. Shi, J. Wang, G. Qiao, Z. Jin and Z. Shen: J. Eur. Ceram. Soc., 31 (2011) 863. https://doi.org/10.1016/j.jeurceramsoc.2010.11.018
  5. J. Zhu, J. Gao, J. Yang, F. Wang and K. Niihara : Mat. Sci. Eng. A-struct., 490 (2008) 62. https://doi.org/10.1016/j.msea.2008.01.017
  6. Y. Bai, X. He, C. Zhu and G. Chen: J. Am. Ceram. Soc., 95 (2012) 358. https://doi.org/10.1111/j.1551-2916.2011.04934.x
  7. K. Liu, B. Lauwers and D. Reynaerts: Int. J. Adv. Manuf. Technol., 47 (2010) 11. https://doi.org/10.1007/s00170-009-2056-1
  8. K. Liu, D. Reynaerts and B. Lauwers: CIRP Ann-Manuf. Technol., 58 (2009) 217. https://doi.org/10.1016/j.cirp.2009.03.002
  9. Z. J. Lin, M. J. Zhuo, M. S. Li, J. Y. Wang and Y. C. Zhou: Scripta Mater., 56 (2007) 1115. https://doi.org/10.1016/j.scriptamat.2007.01.049
  10. C.-C. Liu and J.-L. Huang: British Ceramic Transactions, 4 (2000) 149.
  11. C.-C. Liu and J. -L. Huang: Ceram. Int., 29 (2003) 679. https://doi.org/10.1016/S0272-8842(02)00217-1
  12. C. Wei, L. Zhao, D. Hu and J. Ni: Int. J. Adv. Manuf Technol., 64 (2013) 187. https://doi.org/10.1007/s00170-012-3995-5
  13. B. Lauwers, J. P. Kruth, W. Liu, W. Eeraerts, B. Schacht, P. Bleys: J. Mater. Process. Tech., 149 (2004) 347. https://doi.org/10.1016/j.jmatprotec.2004.02.013
  14. P. Fonda, Z. Wang, K. Yamazaki and Y. Akutsu: J. Mater. Process. Tech., 202 (2008) 583. https://doi.org/10.1016/j.jmatprotec.2007.09.060
  15. B. Jabbaripour, M. H. Sadeghi, Sh. Faridvand and M. R. Shabgard: Mach. Sci. Technol., 16 (2012) 419. https://doi.org/10.1080/10910344.2012.698971
  16. S. Lee, T. Kim and M. Hong: J. Ksmte, 21 (2012) 658 (Korean).