• Title/Summary/Keyword: Machining mechanism

Search Result 286, Processing Time 0.027 seconds

Micro Electrochemical Machining using Anodic Polarization Curve (양극분극곡선을 미용한 미세 전해가공)

  • 최영수;강성일;전종업;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.999-1002
    • /
    • 2002
  • In this research, the mechanism of micro-ECM was investigated with potentiodynamic method and the optimal condition for micro-ECM was selected by voltage-current-time curve with potentiostatic method. From the experimental result. it was confirmed that anodic voltage curve could be used very effectively for determining the optimal condition of micro-ECM, and the micro part which has extremely fine surface could be fabricated by use of micro-ECM with point electrode method.

  • PDF

Prediction of Chip Formation Mechanism Using Acoustic Emission (음향방출을 이용한 칩 발생 기구의 예측)

  • 맹민재
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 2001
  • The machining process on be considered as a planned interaction of the workpiece, the tool and the machine tool. In an unmanned situation, the results of this interaction are to be continuously monitored so that any changes in the machining environment on be sensed to corrective actions. In order to design the process monitoring system for unmanned manufacturing, the identification of chip formation is proposed. The system proposes the method of using acoustic emission(AE) signal analysis to identify the chip formation during cutting.

  • PDF

Observation for Machinability of Hardening Particle Dispersed Iron Based Sintered Alloy

  • Tamori, Ryo;Ishihara, Naoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.301-302
    • /
    • 2006
  • Machinability and machining mechanism were examined in the case where resin impregnation treatment was conducted to the Mo-Co hardening particle dispersed iron-based sintered alloy. As a result, the force required for machining decreased significantly compared with the case where resin impregnation treatment was not conducted. This effect is considered to be attributable to the embrittlement of cutting chips produced by the minimization of the cut material deformation.

  • PDF

A Study on Computational Analysis of Ultraprecsion High-speed Machining Process Considering the Strain Rate Effect (초정밀 고속가공 공정에서의 변형율속도를 고려한 전산 시뮬레이션 해석에 관한 연구)

  • Shin, Bo-Sung;Je, Tae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.3-9
    • /
    • 2006
  • HSM(High-speed Machining) is widely used in rapid manufacturing of precision products and molds of various materials. Improvement in cutting efficiency is one of the important subjects in the HSM process. To analyse the dynamic behavior during a very short cutting time, the computational analysis code, LS-DYNA3D, was employed for the simulation of the mechanism of HSM for aluminium 7075. This cutting mechanism includes some difficult points in simulation, for example, material and geometrical non-linearity, high-speed dynamic impact, contact with friction, etc. In this paper, a finite element model considering the strain rate effect is proposed to predict the cutting phenomena such as chip deformation, strain and stress distributions, which will help us to design the HSM process.

  • PDF

Wear Patterns and Mechanisms of Cutting Tool in Cutting of Machinable Ceramics (가공성 세라믹 절삭에서 공구의 마멸 패턴과 메카니즘)

  • Jang, Sung-Min;Baek, Seung-Yub
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.1-6
    • /
    • 2010
  • When the ceramic material is being machined, micro crack and brittle fracture dominate the process of material removal. Generally, ceramics are very difficult-to-cut materials and machined using conventional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Machinable ceramics used in this study contain BN powder to overcome these problem and for productivity elevation. This paper focuses on machinability evaluation during end mill process with CNC machining center in this study. Experiment for this purpose is performed for tool wear patterns and mechanism.

Analysis of Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in Turning Operation for Environmentally Conscious Machining(II)

  • Hwang Joan;Hwang Duk-Chul;Chung Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.3-7
    • /
    • 2005
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling and lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor. Cutting fluid's aerosol via atomization process can generate human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol of which particle size less than 10 micron appears near working zone under typical operation conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided as a basis of environmental impact analysis for environmental consciousness.

Development of a Parallel-Typed CNC Machine (병렬기구형 CNC 공작기계의 개발)

  • Lee, Min-Ki;Choi, Byung-Oh;Kim, Tae-Sung;Park, Kun-Woo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.535-540
    • /
    • 2000
  • This paper presents the development of a Parallel-Typed CNC Machining Tool. It is specially designed to machine a complex shaped workpiece by controlling the orientation of the tool. The inverse/direct kinematics of a parallel mechanism is derived and implemented in a PC based controller. With graphics icons, the GUI (Graphic User Interface) program is developed for the CNC programing. The calibration is accomplished by geometric constraint motion, which is a parallel motion of the platform with respect to a table. The calibration result is introduced and the future study is proposed.

  • PDF

A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(II) (환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(II))

  • Hwnag, Joon;Chung, Eui-Sik;Hwnag, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.50-57
    • /
    • 2003
  • This paper presents the experimental results to verify the atomization characteristics and environmental impact of cutting fluid. Even though cutting fluid improves the productivity through the cooling, Lubricating effects, environmental impact due to cutting fluid usage is also increased on factory shop floor Cutting fluid's aerosol via atomization process can be affected human health risk such as lung cancer and skin diseases. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working tone under typical operational conditions. The aerosol concentration also exceeds NIOSH regulations. This research can be provided a basis of environmental impact analysis fur environmental consciousness.

Micro/Meso Cutting with Micro Turning Lathe (Micro 선반을 이용한 Micro/Meso 절삭에 관한 연구)

  • 고태조;김희술;배영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1025-1028
    • /
    • 2002
  • In this paper, a micro-turning lathe is introduced for micro machining of aluminum rod. To give feed motion, stepwise motion[2] actuators are used instead of the conventional inchworm mechanism. These are consisted of two Piezoelectric ceramics; one is for feeding the slider, and the other is for clamping the slider in the guide way of the body. The guide is V-form. The linearity and positional accuracy of the actuators is good enough far high precision motion. Since the system is more compact than the conventional system using three Piezoelectric ceramics, it is applicable for the micro-machine or MEMS unit. To fabricate the lathe, a small spindle unit with ball bearings of diameter of 10 millimeter is built-up on the top the slider. The motion is feed backed with miniaturized linear encoder attached each axis slider. The diamond tool bite is used for cutting tool. The machining is tried to make small diameter rod. The possible diameter that can be machined in this machine is presented as well as chip formation, surface roughness, and machinability.

  • PDF