• 제목/요약/키워드: Machining information analysis

검색결과 42건 처리시간 0.027초

복합곡면의 다면체 곡면 근사 (Approximation of a compound surface to polyhedral model)

  • 김영일;전차수;조규갑
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.100-103
    • /
    • 1996
  • Presented in this study is an algorithmic procedure to obtain polyhedral model from a compound surface. The compound surface in this study denotes a collection of trimmed surfaces without topological relations. The procedure consists of two main modules: CAD data interface, and surface conversion to polyhedral model. The interface module gets geometric information from CAD databases, and makes topological information by scanning the geometric information. We are investigating CATIA system as a data source system. In the surface conversion module, a shell(compound surface with topological information) is approximated to a triangular-faceted polyhedral surface model through node sampling and triangulation steps. The obtained polyhedral model should obey the vertex-to-vertex rule and meet tolerance requirements. Since the polyhedral model has a simple data structure and geometry processing for it is very efficient and robust, the polyhedral model can be used in various applications, such as surface rendering in computer graphics, FEM model for engineering analysis, CAPP for surface machining, data generation for SLA, and NC tool path generation.

  • PDF

초정밀 엔드밀링 가공조건 최적화를 통한 금속상의 3차원 이미지 구현 (Realization of 3D Image on Metal Plate by Optimizing Machining Conditions of Ultra-Precision End-Milling)

  • 이재령;문승환;제태진;정준호;김휘;전은채
    • 한국정밀공학회지
    • /
    • 제33권11호
    • /
    • pp.885-891
    • /
    • 2016
  • 3D images are generally manufactured by complex production processes. We suggested a simple method to make 3D images based on a mechanical machining technology in this study. We designed a tetrahedron consisted of many arcs having the depth of $100{\mu}m$ and the pitch of $500{\mu}m$, and machined them on an aluminum plate using end-milling under several conditions of feed-rate and depth of cut. The area of undeformed chip including depth of cut and feed-rate can predict quality of the machined arcs more precisely than the undeformed chip thickness including only feed rate. Moreover, a diamond tool can improve the quality than a CBN tool when many arcs are machined. Based on the analysis, the designed tetrahedron having many arcs was machined with no burr, and it showed different images when observed from the left and right directions. Therefore, it is verified that a 3D image can be designed and manufactured on a metal plate by end-milling under optimized machining conditions.

반도체 웨이퍼 다이싱 공정을 위한 생산시점 정보관리시스템 (A Point of Production System for Semiconductor Wafer Dicing Process)

  • 김인호
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.55-61
    • /
    • 2009
  • 본 연구는 웨이퍼 다이싱 공정의 가공정보들을 수집하여 실시간으로 관리하는 생산시점의 정보관리시스템에 대한 연구이다. 개발한 시스템은 POP용 단말기, 라인 컨트롤러 및 네트웍으로 구성된다. LAN은 상위관리시스템을 연결하며, RS485 네트웍은 하위시스템인 라인 컨트롤러와 단말기를 연결한다. 라인 컨트롤러는 POP 단말기와 서버를 연결하기 위해 사용된다. 웨이퍼의 실시간 가공정보는 기계, 제품, 작업자의 정보발생원들로부터 얻고, 이들은 최적절삭조건을 계산하기 위하여 사용된다. 수집된 정보는 절삭속도, 순수의 여부, 처리 중인 블레이드의 누적 절삭량 및 불량 웨이퍼의 수이다. 상위시스템의 생산계획정보는 웨이퍼 가공공정의 관리를 위해서 현장에 전달되며, 생산결과정보는 현장에서 수집하여 서버로 전달되고 필요한 형태로 정보가 가공되어 공정관리용 정보로 사용된다. 개발한 시스템을 반도체 웨이퍼 가공공정에 적용한 결과, 생산진전상태, 각 기계에 대한 작업시간 및 비작업시간의 해석 및 웨이퍼 불량률의 해석이 가능하며, 이들은 다이싱 공정의 품질 및 생산성 향상을 위한 생산공정 관리정보로 활용할 수 있을 것이다.

엔드밀 가공면의 표면거칠기 모델 (Surface roughness model of end-milling surface)

  • 진도훈;김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.68-74
    • /
    • 2013
  • In this paper, an average surface roughness, $R_a$, was measured by optical measurement and its mathematical model according to spindle speed and feedrate was obtained by least square method. Also, its result is compared and investigated with real measured average surface roughness. The optical measurement of surface roughness is performed by CLSM(confocal laser scanning microscope) and the captured HEI(height encoded image) data is used as an original data for the generation of average surface roughness and its mathematical plane or contour surface of surface roughness. Using this polynomial model with two independent variables, the behavior of an average surface roughness is investigated and analyzed with an experimental modeling of least square algorithm. And it can be used for the prediction of $R_a$ in different condition of machining.

밀링가공에서 공구마모와 스핀들의 비틀림 진동과의 상관관계에 관한 연구 (Research on the Effect of Cutter Wear on the Torsional Vibration of Spindle in Milling)

  • 김석관
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.62-67
    • /
    • 1999
  • In milling, cutting tool ins directly attached to spindle and this tells that spindle can provide very useful information on the cutting tool condition such as wear or breakage. Since spindle is rotating at a high speed, measuring spindle velocity using a noncontacting measurement system gives the best information which can be obtained. Due to the force applied to spindle through cutting tool, velocity of spindle changes. And any change in cutting tool condition affects cutting force and consequently spindle vibration. With the intent of continuously monitoring cutting tool condition in intermittent machining operations in a benign manner, a noncontacting velocity measurement system using a laser Doppler velocimeter was assembled to measure spindle torsional vibration. Spindle vibration was measured and analysis of it in the frequency domain yielded a measure which corresponded to amount of cutting tool wear in milling.

  • PDF

PS-NC Genetic Algorithm Based Multi Objective Process Routing

  • 이성열
    • 한국산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.1-7
    • /
    • 2009
  • 이 논문은 다목적 공정순서계획 알고리즘을 소개한다. 공정순서계획이란 가용한 기계들을 이용하여 원재료를 가공 완료된 부품으로 변형해주는 최적 공정순서들을 결정하는 일이다. 어느 컴퓨터 지원 공정계획 시스템에서나, 가공작업 순서의 결정은 부품 가공이나 부품 도면상의 기술적인 요구사항들을 충족시켜주기 위한 가장 중요한 활동 중의 하나이다. 여기서, 목표는 생산시간, 생산비용, 기계가동률 또는 이들을 복합적으로 만족시켜주는 최적 가공순서를 생성하는 일일 것이다. 파레토 스트라튬 니치 큐비클 (PS NC) 유전 알고리즘이 두 가지 상호 배타적인 기준인 생산비용과 생산품질을 동시에 최적화 시켜주는 가공순서들을 찾는데 이용되었다. 예제에 의한 검증은 제안된 PS NC 유전자 알고리즘이 공정계획문제에 있어서 효과적이며 효율적인 결과를 가져오는 것을 보여준다.

엔드밀 가공에서 프랙탈 차원 해석을 통한 표면 거칠기의 특성 (Characteristics of Surface Roughness through Fractal Dimension Analysis in End milling)

  • 최임수;이기용;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1083-1087
    • /
    • 1997
  • End milling is available for machining the variable shape of products and has brrn widely applied in many Manufacturing industries. The surface finish of machined parts determines quality and functionality of products. Surface roughness causes friction,noise,fracture, glossiness and seizure, so many research had been performed to precisely. In particular an experimental analysis was carried out to investigate the influence ofsurface roughness on the fractal dimension. This parameter was assumed to contain not only information of roughness but also extra meaning. Experiments which were performed under various cutting conditions to compare fractal dimension with surface roughness R /sab a/ show fractal dimension to be useful parameter for determining of roughness.

  • PDF

유압구동부재의 구름운동상태 예지 및 판정을 위한 신경 회로망의 적용 (Application of Neural Network to Prediction and estimation of Rolling Condition for Hydraulic members)

  • 조연상;김동호;박흥식;전태옥
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.646-649
    • /
    • 2002
  • It can be effect on diagnosis of hydraulic machining system to analyze working conditions with shape characteristics of wear debris in a lubricated machine. But, in order to predict and estimate working conditions, it is need to analyze the shape characteristics of wear debris and to identify. Therefor, if shape characteristics of wear debris is identified by computer image analysis and the neural network, it is possible to find the cause and effect of moving condition. In this study, wear debris in the lubricant oil are extracted by membrane filter, and the quantitative value of shape characteristics of wear debris we calculated by the digital image processing. This morphological informations are studied and identified by the artificial neural network. The purpose of this study is In apply morphological characteristics of wear debris to prediction and estimation of working condition in hydraulic driving systems.

  • PDF

스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증 (Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load)

  • 이동섭;김인수;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

복합형상 및 다중경로에 대한 Exit Burr 판별 알고리듬의 개발- 스플라인을 포함한 Exit Burr의 해석 - (Development of Exit Burr Identification Algorithm on Multiple Feature Workpiece and Multiple Tool Path)

  • 김지환;이장범;김영진
    • 산업공학
    • /
    • 제18권3호
    • /
    • pp.247-252
    • /
    • 2005
  • In the automated production environment in the present days, the minimization of manual operation becomes a very important factor in increasing the efficiency of the production system. The exit burr produced through the milling operation on the edge of workpiece usually requires manual deburring process to enhance the level of precision of the resulting product. So far, researchers have developed various methods to understand the formation of exit burr in cutting process. One method to analytically identify the formation of exit burr was to use the geometrical information of CAD and CAM data used in automated machining. This method, in turn, generated the information resulting from the analysis such as burr type, cutting region, and exit angle. Up to now, the geometrical data were restricted to the single feature and single path. In this paper, a method to deal with the complicated geometric features such as line segment, arc, hole, and spline will be presented and validated using the field data. This method also deals with the complex workpiece shape which is a combination of multiple features. As for the cutting path, multiple tool path is analyzed in order to simulate the real cutting process. All this analysis is combined into a Windows based software and real data are used to validate the program in the conclusion.