• Title/Summary/Keyword: Machining factor

Search Result 180, Processing Time 0.022 seconds

Study on Upward Machining of Inclined Surface by Ball-End Milling (볼 엔드밀에 의한 경사면 상방향 절삭가공에 관한 연구)

  • Jeong, Jin-Woo;Bae, Eun-Jin;Kim, Sang Hyun;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.87-93
    • /
    • 2021
  • The mold industry is competitive, and mold should be processed under optimal conditions for efficient processing. However, the cutting conditions of the ball-end mill, which are a major factor in mold processing, are mostly set empirically, and considerable research is required for increasing the tool life and processing accuracy. In this study, a tool dynamometer and an eddy current sensor were used along with NI-DAQ, a data acquisition device, to obtain characteristic values of the cutting force and tool deformation during the ball end-mill machining of inclined surfaces at a machining center. The cutting force and tool deformation were measured in an experiment. It was found that the tool received the greatest cutting force at the end of the machining process, and the deformation of the tool increased rapidly. Furthermore, the cutting force tended to increase with the angle and number of rotations. The deformation increased rapidly during the machining of a 45° inclined surface.

A Study on the Analysis of Error Sources and Error Compensation in Machine Tools (공작기계 오차 요인의 분석 및 보정에 관한 연구)

  • Kim, Ki-Hwan;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.185-192
    • /
    • 2017
  • Machine tool errors can be divided into geometric error, thermal deformation error, and machining error. In this study, the influence of each error on the total error and the relative size of each error are quantitatively analyzed in 2D machining. The thermal deformation error and the machining error caused a relatively large error compared to the geometric error, which is directly related to the machining accuracy. In order to eliminate the error factors, the possibility of error compensation was examined by analyzing the measured error profile shape. As a result, about 40 ~ 50% error compensation was achieved for each error factor. Through this study, it is possible to construct a basic data base on machining, and it is expected that it will be able to compensate the machining error from the viewpoint of users.

A Study on the Construction of an Artificial Neural Network for the Experimental Model Transition of Surface Roughness Prediction Results based on Theoretical Models in Mold Machining (금형의 절삭가공에서 이론 모형 기반 표면거칠기 예측 결과의 실험적 모형 전환을 위한 인공신경망 구축에 대한 연구)

  • Ji-Woo Kim;Dong-Won Lee;Jong-Sun Kim;Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2023
  • In the fabrication of curved multi-display glass for automotive use, the surface roughness of the mold is a critical quality factor. However, the difficulty in detecting micro-cutting signals in a micro-machining environment and the absence of a standardized model for predicting micro-cutting forces make it challenging to intuitively infer the correlation between cutting variables and actual surface roughness under machining conditions. Consequently, current practices heavily rely on machining condition optimization through the utilization of cutting models and experimental research for force prediction. To overcome these limitations, this study employs a surface roughness prediction formula instead of a cutting force prediction model and converts the surface roughness prediction formula into experimental data. Additionally, to account for changes in surface roughness during machining runtime, the theory of position variables has been introduced. By leveraging artificial neural network technology, the accuracy of the surface roughness prediction formula model has improved by 98%. Through the application of artificial neural network technology, the surface roughness prediction formula model, with enhanced accuracy, is anticipated to reliably perform the derivation of optimal machining conditions and the prediction of surface roughness in various machining environments at the analytical stage.

Characterization of Surface Roughness Using the Concept of Entropy in Machining (엔트로피 개념을 이용한 절삭가공에서 표면거칠기의 특성화)

  • 최기홍;최기상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3118-3126
    • /
    • 1994
  • This paper describes the use of the concept of (relative) entropy for effective characterization of the amplitude and the frequency distributions of the surface profile formed in machining operation. For this purpose, a theoretical model for surface texture formation in turning operation is developed first. Then, the concept of (relative) entropy is reviewed and its effectiveness is examined based on the simulation and experimental results. The results also suggest that under random tool vibration the effect of the geometrical factors on the surface texture formation can be successfully decomposed and therefore, identified by applying the concept of (relative) entropy.

Characteristics of Roundness Using Die-sinking Electrical Discharge Machining by Circular Electrode (원형전극봉에 의한 형조방전가공시 진원도 특성)

  • 우정윤;왕덕현;김원일;이윤경;김종업
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.245-250
    • /
    • 1999
  • The experimental study of die-sinking electrical discharge machining for alloy tool steel of STD-11 with circular electrode was conducted for various conditions of the peak current and duty factor with the change of internal size of electrode for distributing the amount of dielectric flow through the electrode. From this study, the material removal rate(MRR) was found to be increased with the peak current and duty factor. The more MRR was obtained for the case of electrode inside diameter of 10mm. The surface roughness and roundness values were analyzed regularity under various conditions, and these values were not affected by the inside diameter change of electrode.

  • PDF

A Study on the Plasma Hot Machining to Improve the Machinability of Inconel 718 (Inconel 718 의 절삭성 개선을 위한 플라즈마 고온 절삭 가공법에 관한 연구)

  • 김진남
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.67-76
    • /
    • 1995
  • An experimental study of hot machining has performed to improve the machinability of Inconel718. This experiment used plasma are for heating materials and Whisker0reinforce aluminum oxide ceramic tool insert. An assembled plasma heating system are described and experimental results from both conventional and plasma hot machining of Inconel 718 are compared. The experiments with plasma heating demonstrated the following effectiveness. 1)The cutting force was reduced with increasing surface temperature of workpiece from 450$^{\circ}C$ up to 720$^{\circ}C$ as much as approximately from 20 to 40%. 2) Surface roughness(Ra) was improved by as much as a factor 2 in case of one pass cutting with new ceramic tool inserts.3) The depth of cut notch were at promary cutting tool was significantly reduced.

  • PDF

Characteristics of RC Circuit with Transistors in Micro-EDM (트랜지스터 부착 RC 방전회로의 마이크로 방전가공 특성)

  • Cho Pil Joo;Yi Sang Min;Choi Deok Ki;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.44-51
    • /
    • 2004
  • In a micro-EDM, it is well known that an RC circuit is suitable as a discharge circuit because of its low pulse width and relatively high peak current. To increase machining speed without changing unit discharge energy, charge resistance should be decreased. But, when the resistance is very low, continuous (or normal) arc discharge occurs, electrode wear increases and machining speed is reduced remarkably. In this paper, an RC circuit with transistors is used in a micro-EDM. Experimental results show that the RC circuit with transistors can cut off a continuous (o. normal) arc discharge effectively if the duty factor and switching period of the transistor are set up optimally. Through experiments with varying charge resistances, it is shown that the RC circuit with transistors has about two times faster machining speed than that of an RC circuit.

Development of Tool Item Selection System Aiding CAM Procedure for Injection Mold (사출금형 CAM 작업 지원용 공구 항목 추천 시스템 개발)

  • 김성근;양학진;허영무;양진석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.118-125
    • /
    • 2003
  • As consumer's desire becomes various, agility of mold manufacturing is the most important factor for competitive mold manufacturer. Decision making process is required to produce optimal result of CAM systems in using commercial CAM system to generate tool path. The paper proposes a methodology fur computer-assisted tool selection procedures for various cutting type of rough, semi-rough and finish cuts. The procedure provides assistance for machining tool selection by analyzing sliced CAD model section of die cavity and core. Information about machining time for the generated NC-code is used to aid the tool selection. The module is developed with commercial CAM API. This module will be used fur the optimization of tool selection and planning process.

An Experimental Study to Reduce the Fraction of Noise Defect of Hoist Gear Boxes (호이스트 기어박스의 소음불량률 저감을 위한 실험적 연구)

  • 이희원;손병진;신용하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1347-1354
    • /
    • 1994
  • This paper deals with the experimental research, including measurement and analysis and field survey, on the causes of occurring noise defective gear boxes in hoist production plant in order to reduce the fraction of their occurrence. In this reserch following investigations are performed : measurement and gear-boxes, examination of each machining process of production, measurement and analysis of dimensional accuracy of each part, comparative vibration test with exchanging inaccurate parts. From these investigations, it is found that the machining accuracy of pinion gear tooth thickness is the most sensitive factor of noise problem. By maintaining the tooth thickness error within 0.05 mm tolerance in the gear cutting process, the fraction of noise defective gear-boxes are greatly reduced to less than 2%, where the usual rate of it has been 20-50%.

A Study on the Mchining Elasticity Parameter in the Grinding Process (연삭공정에서의 가공탄성계수에 관한 연구)

  • Yim, G. H.;Kim, K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.3-7
    • /
    • 1995
  • Force generated during grinding process causes elastic defomation. The effect of this deforms a workpiecs. So grinding system is explainable using the concept of macining elasticity phenomenon. Machining elasticity is defined as ratio between the true depth of c ut, and an importnat factor to affect material removal mchanism and productivity. Generally, to produce accurate surface and dimensionally precise components operators depend on their experiences. Because of these, productivity is reduced and time is wasted. The objective of this reserch is to study the effect of grinding conditions, such as table speed, depth of cut on the machining elasticity parameter.

  • PDF