• Title/Summary/Keyword: Machining Test

Search Result 379, Processing Time 0.024 seconds

볼엔드밀 절삭공정의 절삭력 디지털 제어

  • 이천환;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.198-203
    • /
    • 1992
  • There are two important variables in machining process control, which are feed and cutting speed. It is possible to improve the machining accuracy and the productivity by maintaining the optimal feed and cutting speed. IN this work, a controller is designed to achieve on-line cutting force control based on the modeling of cutting process dynamics established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and the second is spindle speed control under the constant feed. Finally, both are proved to work properly through simulation and experimentation.

Surface grinding of WC-Co with high quality (WC-Co의 고품위 평면 연삭가공)

  • Heo, S.J.;Kang, J.H.;Kim, W.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-55
    • /
    • 1994
  • Presently, abrasive processing is on eof several methods for cutting and grinding brittle materials, and high quality in dimensional accuracy and surface roughness are often required as a structural components, therefore most of them has to be ground. In manufacturing of tungsten-carbide components, grinding by diamond wheel is usually adopted in order to provide configurational and dimensional accuracy to the components. The present study proposes the experi- mental research of optimum condition to the high quality surface grinding of the WC-Co material using diamond abrasive wheel in order to minimize the damage on the ground surface and to pursue the precise dimension by conventional grinding machine. Brief investigation is carried out to decrease the dressing is constant, theoretical grinding effect such as machining precision is changed according to the speed of workpiece. Accordingly, normal and tangential grinding forces, which are Fn, Ft were analyzed for the machining processes of WC-Co material to obtain optimum grinding conditions, 3-point bending test is carried out to check machining damage on the ground surface layer, which is one of sintered brittle materials.

  • PDF

Evaluation of Vibration Characteristics and Machinability of High Speed Machining Center (고속 머시닝센터의 진동특성 및 가공성 평가)

  • 강익수;강명창;김정석;김기태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.424-429
    • /
    • 2004
  • The high speed machining center(HMC) has been widely applied to manufacture a die and trial product in many machine industry. Because the evaluation for HMC is not sufficiently performed and the efficient cutting conditions can't be selected, a peat loss has been caused in the cost aspect. In this study, the need of preliminary running time and unstable spindle speed is presented by the analysis of acceleration in idling. The Machinability for the TiA1N coated flat end mill and STD11 (H$\sub$R/C60) is evaluated from the trends of tool wear and cutting force according to cutting conditions . The resonance spindle speed is identified through the tool wear and natural frequency test.

  • PDF

Effects of Cutting Direction on the Laser Machining Characteristics of Wood (절삭방향(切削方向)이 목재(木材)의 레이저절삭특성(切削特性)에 미치는 영향(影響))

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.87-92
    • /
    • 1996
  • When cutting 2.0cm-thick red oak and hard maple with an air-jet-assisted carbon-dioxide laser of 2kW output power, maximum feed speed at the point of full penetration of the beam decreased with increasing the angle between grain and cutting direction. Feed speed averaged 3.75 and 3.38 meters per minute for red oak and hard maple, respectively. Gray-level of laser-cut surfaces were analyzed by image analysis system. The highest gray level of laser-cut surface was obtained when red oak was cut parallel to grain by laser. Surface profiler was used to scan the sawn and laser-cut surfaces. Center line average roughnesses of laser-cut surfaces were higher than those of sawn surfaces. Scanning electron micrographs showed the cell walls which were melted by laser.

  • PDF

An Experimental Study to Reduce the Fraction of Noise Defect of Hoist Gear Boxes (호이스트 기어박스의 소음불량률 저감을 위한 실험적 연구)

  • 이희원;손병진;신용하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1347-1354
    • /
    • 1994
  • This paper deals with the experimental research, including measurement and analysis and field survey, on the causes of occurring noise defective gear boxes in hoist production plant in order to reduce the fraction of their occurrence. In this reserch following investigations are performed : measurement and gear-boxes, examination of each machining process of production, measurement and analysis of dimensional accuracy of each part, comparative vibration test with exchanging inaccurate parts. From these investigations, it is found that the machining accuracy of pinion gear tooth thickness is the most sensitive factor of noise problem. By maintaining the tooth thickness error within 0.05 mm tolerance in the gear cutting process, the fraction of noise defective gear-boxes are greatly reduced to less than 2%, where the usual rate of it has been 20-50%.

A Study on the Machining Characteristics by the Internal Quality of Heat Resisting Steel (내열강의 내부품질에 따른 절삭가공 특성에 관한 연구)

  • 채왕석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.24-29
    • /
    • 2000
  • This paper is experimental study of machining characteristics about martensitic heat resisting steel STR11. Machining characteristics are different according to internal quality(chemical compositions, microscopic structure and nonmetallic inclusion) mechanical properties(tensile strength value impact value and hardness) and dynamic cutting force. Following are the results : 1. In analyzing internal quality test materials have typical martensite structure and a minute needle-shaped structure. 2. Tensile strength and reduction of area and hardness are larger. But values of elongation and impact values are smaller. Fracture surface of tensile specimen is ductile. 3, Cutting force is decreasing with cutting speed increasing 4. Cutting force is increasing with feed speed increasing.

  • PDF

Development of Micropositioning System Using a Magnetostrictive Material (자기변형재료를 이용한 마이크로포지쇼닝 시스템의 개발)

  • 박영우;원문철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.117-120
    • /
    • 1995
  • In this machining process, variation in cutting forces results in relative displacements between the tool and the workpiece leading to tool vibration. Also there is a demand to change the depth of cut very frequently. A soluion for both cases is to develop a system which has the ability to reposition a cutting tool to a very small level, i.e., micron. This ppaper presents the development of a micropositioning system (MPS) using a magnetostrictive material. The deveoped MPS is implemented to a lathe and subjected to static and machining test. The results show that the MPS has good potential for machining application

  • PDF

Analysis of Cutting Parameters for $Si_3 N_4$-hBN Machinable Ceramics Using Tungsten Carbide Tool (초경공구를 사용한 $Si_3 N_4$-hBN 머시너블 세라믹 가공에서 절삭 파라미터 분석과 결정)

  • 장성민;조명우;조원승;박동삼
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.36-43
    • /
    • 2003
  • In machining of ceramic materials, they are very difficult-to cut materials because of there high strength and hardness. Machining of ceramics are characterized by cracking and brittle fracture. Generally, ceramics are machined using conventional method such as finding and polishing. However these processes are generally costly and have low MRR(material removal rate). This paper focuses on determining the optimal levels of process parameters for products with CNC machining center. For this purpose, the optimization of cutting parameters is performed based on experimental design method. A design and analysis of experiments is conducted to study the effects of these parameters on the surface roughness by using the S/N ratio, analysis of ANOVA and F-test. Cutting parameters, namely, cutting speed, feed and depth of cut are optimized with consideration of the surface roughness.

Machining Characteristics of Ti-6Al-4V Titainum Alloy (Ti-6Al-4V 타이타늄 합금의 선삭특성)

  • 홍우표;김형철;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.818-822
    • /
    • 2000
  • The low density, sustained high temperature strength and excellent resistivity to acid materials have made them strong candidate materials for future aerospace or medical applications. Nowadays their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items, Anticipating the general use of this material and development of the titanium alloys in domestic furnaces, the review and the study of the machining parameters for those alloys are deemed necessary. The present studies are concentrated to the machining parameters of the Ti-6Al-4V alloys due to their dominant position in the production of titanium alloys.

  • PDF

Interference-Free Tool Approach Directions in Multi-Axis NC Machining of Sculptured Surfaces (자유 곡면의 다축 NC 가공시 간섭 없는 공구 접근 자세 영역)

  • J.G. Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.108-115
    • /
    • 1997
  • In this paper, an algorithm of computing interference-free tool approach directions(visibility cone) with consideration of tool volume at an arbitrary point of a sculptured surface is developed. The surface is first approximated into a polyhedron with smaller subpatches and the tool approach directions are evenly sampled so as to test accessibility. Then the visibility cone is computed by testing if each approach direction is interfered by other surface subpatches. The results are represented as the binary spherical map which transform geometric information on sphere into aogebraic one. The developed algorithm is implemented and tested by several sculptured surfaces, convincing it can be easily used as a tool for not only interference- free tool approach directions but also determining process planning of multi-axis NC machining of sculp- tured surfaces

  • PDF