• Title/Summary/Keyword: Machining Rate

Search Result 567, Processing Time 0.027 seconds

S, PbS 및 Bi S 쾌삭강의 칩절단 특성 (Chip Breaking Characteristics of S, PbS, and BiS Free Machining Steels)

  • 이영문;배대원;장준호
    • 한국기계가공학회지
    • /
    • 제4권2호
    • /
    • pp.3-9
    • /
    • 2005
  • In this study, the chip breaking characteristics of S, PbS and BiS free machining steels have been assessed. PbS free machining steel shows the lowest value of chip thickness ($t_c$) under the same cutting conditions. SM10C steel has the largest value of the chip cross-section area ratio ($R_{CA}$). As the feed rate becomes larger the chip breaking cycle time ($T_B$) decreases and the chip breaking index ($C_B$) increases. The properly controlled-C type chip has been obtained with the value of $C_B$ between 0.05 and 0.2. Free machining steel, PbS produces the properly controlled-C type chip in a wider feed rate range than other steels.

  • PDF

마이크로 엔드밀 가공시 가공인자가 표면거칠기 향상에 미치는 영향 (Effects of Machining Conditions for Improvement of Surface Roughness on Micro End-Milling)

  • 조병무;김상진;박희상;배명일
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.71-76
    • /
    • 2008
  • Micro end-milling is one of effective technology that is able to do ultra-precision machining while increasing the productivity and has wide application field. But selection of machining condition is very difficult because of complicated machining mechanism. Therefore this study was carried out to select working factors to get the optimum surface roughness. Machining condition are depth of cut, feed rate and spindle revolution. The result of this study showed that Surface roughness was affected, in the other of depth of cut, spindle revolution, feed rate. And this study provided an regression equation relating surface roughness to working factors through Regression Analysis and determination coefficient of regression equation had a satisfactory reliability of 79%.

머시닝센터 가공에서 Al2017의 표면거칠기 특성에 관한 실험적 연구 (An Experimental Study of Al2017 on Characteristics of the Surface Roughness in Machining Center Processing)

  • 김찬영
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.68-72
    • /
    • 2012
  • Al2017 is typical Duralumin of self-hardening aluminum alloy. It is lightweight, formability and machinability so throughout the industries have widely used automobile, electronics, semiconductor and aircraft as material. A variety of CNC machine tool processing technology, scientific principles and experience have been studied in order to increase accuracy and productivity. Using a machining center is to constant amount of side step and cutting characteristics studied changing depth of cut, revolution per minute and feed rate.

기하학적 특성을 이용한 프로펠러의 효율적인 5축가공 (Efficient 5-axis Machining of a Propeller using Geometric Properties)

  • 황종대;윤일우
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.71-78
    • /
    • 2020
  • The rotary feed axes of a 5-axis machine tool can increase the freedom of the tool posture, while reducing feed speed and rigidity. In addition, as a ball-end mill is inevitably used during machining by rotational feed, the step-over length is reduced compared to the flat-end mill, thereby reducing the material removal rate. Therefore, this study attempts to improve the material removal rate, feed speed, and machining stability using the corner radius flat-end mill and a fixed controlled machining method for the rotary feed axes during roughing. In addition, the tapered ball-end mill and simultaneously controlled machining method for the rotary feed axes were used for finishing to improve the propeller's 5-axis machining efficiency by enhancing the surface quality. In order to create the tool path effectively and easily, we propose a specific approach for using the propeller's geometric properties and evaluate the effectiveness of the proposed method by comparing it with the method of the dedicated module.

알루미늄 경사면 절삭의 표면거칠기 (Surface Roughness for the Machining of Inclined Planes of Aluminum)

  • 한정식;정종윤;문덕희
    • 산업경영시스템학회지
    • /
    • 제31권2호
    • /
    • pp.11-18
    • /
    • 2008
  • Surface roughness is an important factor to evaluate machined parts in precision machining. This is the major measure of surface quality. This research sets up experiments to select the factors which affect surface roughness in the machining of inclined planes of aluminum. The levels of the selected experimental factors are chosen to evaluate the relationship between the surface roughness of the machined parts and machining parameters. This is to find out the optimal machining condition in the inclined planes. The objective of this research is to improve the surface roughness of the machined products by using the ANOVA analysis. The factors for the experiments are cutting speed, feed rate, cutting depth, and cutting width. The experimental levels of the factors are two for the cutting depth and width. For the cutting speed and feed rate, their levels are three because they are more sensitive for the surface roughness than the other two. The inclined planes are machined by 5-axis machining equipment.

대형선박용 연료공급관 가공공정 개선 (Improvement of Manufacturing Process for Fuel Oil Supply Pipe using Large Vessel)

  • 전언찬;한민식;김남훈;민정오
    • 한국기계가공학회지
    • /
    • 제9권5호
    • /
    • pp.64-69
    • /
    • 2010
  • This study is the machining of fuel supply pipe used in large vessels. The fuel supply pipe of large vessels have effects to reduce engine exhaust because of common rail system and show excellent fuel efficiency so it is in the limelight as a vessel engine of next generation. At present, the shape of fuel supply pipe of common rail used for huge two-stroke & low-speed vessels is like a peanut hole so the second machining is necessary after the first machining. There is high error rate for machining and the materials waste caused by machining error is serious. Also, in this time the request for increasing the length of fuel supply pipe is suggested in the world market, it's judged that current methods will show higher error rate for machining. Therefore, the purpose of this study is to improve the machining process used originally. For that, the system controlling the process was developed as well as surface roughness and straightness which are evaluation items of fuel supply pipe were measured so that improved process can be observed in real time.

초경합금의 와이어 방전가공에 의한 특성 (Characteristics in W-EDM of Tungsten Carbide)

  • 맹민재
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.7-13
    • /
    • 2001
  • Wire electrical discharge machining experiments in conducted to investigate characteristics of acoustic emission (AE) and electrical discharge energy due to current peak (I$_{p}$), pulse on time($\tau$/on/). The AE signals are obtained with a sensor attached to workpiece side. Machining states are identified with scanning electron microscopy and residual stress analyzer. It is demonstrated that the residual stress provide reliable informations about the machining states. Moreover, machining states can be detected successfully using both the residual stress and AE count rate.e.

  • PDF

정면밀링에서 공구마멸 패턴과 메커니즘 분석에 관한 연구 (A Study on the Analysis of Tool-wear Patterns and Mechanisms in Face Milling)

  • 장성민;백승엽
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.24-29
    • /
    • 2017
  • This paper provides an experimental analysis on the breakage of the coated tool using the face-milling cutter of the machining center due to changes in the cutting speed and the feed rate. The experimental studies were conducted using STS 304 materials and the damage to the tool was analyzed according to the change in machining time. The experiments confirmed that the cutting speed and feed rate affected the tool damage and the mechanical impact and thermal shock were determined to severely damage the tool. From the production engineering point of view, it has been experimentally investigated that the increased feed rate significantly influences the material removal rate more than the increased cutting speed.

볼 엔드밀의 고속가공에서 가공능률을 고려한 가공조건의 선정 (Determination of the Cutting Condition in High Speed-Machining Considering the Machining Efficiency)

  • 손창수;강명창;이득우;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.965-969
    • /
    • 1997
  • Due to the high feed rate,high speed machining (HSM) provide a great potential of rationalization for the machining Dies and Moulds. But determination of cutting condition is very difficult, because cutting mechanism of high speed machining is very complicated,especially using ball end-mill. This paoer gives a report on selection of the optimal cutting condition to improve the machining efficiency, And optimal machining condition is determined through the cutting force, FFT analysis of cutting force and surface roughness according to the cutting condition. Based on this experiment result,wear process and machining characteristics are evaluated.

  • PDF

초음파에 의한 고 세장비 유리가공 특성 (Characteristics of High-Aspect-Ratio Ultrasonic Machining of Glass)

  • 신용주;김헌영;장인배;김병희;전병희
    • 소성∙가공
    • /
    • 제11권7호
    • /
    • pp.608-613
    • /
    • 2002
  • An ultrasonic machining process is efficient and economical means for precision machining of glass and ceramic materials. However, the mechanism of the process with respect to the crack initiation and propagation and the stress development in the ceramic workpiece subsurface arc still not well understood. In this research, we have investigated the basic mechanism of ultrasonic machining of ultrasonic machining of glass by the experimental approach. For this purpose, we designed and fabricated the desktop micro ultrasonic machine. The feed is controlled precisely by using the constant load control system. During machining experiments, the effects of abrasive characteristics and machining conditions on the surface roughness and the material removal rate are measured and compared.