• 제목/요약/키워드: Machining Errors

검색결과 232건 처리시간 0.027초

유정압테이블의 정밀도향상을 위한 수정가공 알고리즘 (Corrective machining Algorithm for Improving the Motion Accuracy of Hydrostatic Table)

  • 박천홍;이찬홍;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.380-384
    • /
    • 1997
  • For improving the motion accuracy of hydrostatic table, corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. Reverse analysis is performed firstly to estimate rail profile from measured linear and angular motion error, in the algorithm. For the next step, correctwe machining information is decided as referring to the estimating rail profile. Finally, motion errors on correctively machined rail are analized by using motion error analysls method proposed in the previous paper. These processes can be rtcrated if the analized motion errors are worse than target accuracy. In order to verify the validity of the algorithm theoretically, motion errors by the estimated rail after corrective machining are compared with motion errors by true rail assumed as the measured value. Estimated motion errors show good agreement with assumed values, and it is confirmed that the algorithm IS effective to acquire the corrective machming information to improve the accuracy of hydrostatic table.

  • PDF

기상계측 시스템을 이용한 머시닝센터의 열변형 오차 모델링 및 오차측정 (Modeling and Measurement of Thermal Errors for Machining Center using On-Machine Measurement System)

  • 이재종;양민양
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.120-128
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of $\pm$2${\mu}{\textrm}{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be improved by using the developed measurement system when the spherical ball artifact is mounted on the modular fixture.

  • PDF

머시닝센터에서 고정밀 가공을 위한 NC 기술 (NC Technology for High-Precision Machining in Machining Centers)

  • 정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.748-754
    • /
    • 1994
  • This paper deals with a geometric error simulator, measurement and inspection of workpiece errors on the machine tools, and identification and compensation methodology of thermal errors in machining centers. In order to raise the machining accuracy of workpieces a measurement and inspection system on the machine tool is developed. By using MPPGT module Manual and CNC type CMMs are realized on the machining centers. To compensate for geometric and thermal deformation errors of machining centers, a real time and an off line geometric adaptive control system were developed on the machining centers. A vertical and a horizontal machining center equipped with FANUC 0MC were used for experiments. Performance of the systems were confirmed with a large amount of experiment.

  • PDF

측면가공에서 마이크로 엔드밀의 공구변형에 의한 절삭가공오차 보상에 관한 연구 (A Study of Machining Error Compensation for Tool Deflection in Side-Cutting Processes using Micro End-mill)

  • 전두성;서태일;윤길상
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.128-134
    • /
    • 2008
  • This paper presents a machining error compensation methodology due to deflection of micro cutting tools in side cutting processes. Generally in order to compensate for tool deflection errors it is necessary to carry out a series of simulations, cutting force prediction, tool deflection estimation and compensation method. These can induce numerous calculations and expensive costs. This study proposes an improved approach which can compensate for machining errors without simulation processes concerning prediction of cutting force and tool deflection. Based on SEM images of test cutting specimens, polynomial relationships between machining errors and corrected tool positions were induced. Taking into account changes of cutting conditions caused by tool position variation, an iterative algorithm was applied in order to determine corrected tool position. Experimental works were carried out to validate the proposed approach. Comparing machining errors of nominal cutting with those of compensated cutting, overall machining errors could be remarkably reduced.

Machining center에서 2차원 원호보간의 복합오차 검출 및 수치제어에 의한 고정밀도 가공방법에 관한 연구 (A study on detection of composite errors and high precision cutting method by numerical control of two-dimensional circular interpolation in machining centers)

  • Kim, J.S.
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.117-126
    • /
    • 1994
  • This paper describes an application step of a $R^{-{\theta}}$ method which measures circular movements in machining centers. The detection of composite errors of circular movements and a high precision cutting method in machining centers were investigated by the analysis of data measured by $R^{\theta }$method which can detect the rotating angle and is applicable to variable measuring radius. When the error by squareness error and unbalance of position-loop-gain were mixed, the detection method of each error was proposed. Although the errors by squarenss error and backlash compensation were mixed, the errors by squareness error be detected. If the errors by unbalance of position-loop-gain and backlash compensation were mixed, the errors by unbalance of position-loop-gain could not detected. A high precision cutting mehod, which uses the NC program compensated by using feed-back data from error measured by the $R^{\theta }$method, was proposed.

  • PDF

PNN을 이용한 기상측정데이터 기반 가공오차보상법 (Integrated Machining Error Compensation Method Using OMM Data and Modified PNN Algorithm)

  • 서태일;조명우;홍연찬;김건희
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.92-97
    • /
    • 2006
  • This paper presents an integrated machining error compensation method based on PNN(Polynomial Neural Network) approach and inspection database of OMM(On-Machine-Measurement) system. To efficiently analyze the machining errors, two machining error parameters are defined and modeled using the PNN approach, which is used to determine machining errors for the considered cutting conditions. Experiments are carried out to validate the approaches proposed in this paper. In result, the proposed methods can be effectively implemented in a real machining situation, producing much fewer errors.

PNN을 이용한 가공오차 보상에 관한 연구 (A Study of Machining Error Compensation Using PNN Approach)

  • 서태일;박동삼;홍연찬;조명우;배종석;신장순;김유진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.581-582
    • /
    • 2006
  • This paper presents an integrated machining error compensation method based on PNN(Polynomial Neural Network) approach and inspection database of OMM(On-Machine-Measurement) system. To efficiently analyze the machining errors, two machining error parameters are defined and modeled using the PNN approach, which is used to determine machining errors for the considered cutting conditions. Experiments are carried out to validate the approaches proposed in this paper. In result, the proposed methods can be effectively implemented in a real machining situation, producing much fewer errors.

  • PDF

유정압테이블의 정밀도향상을 위한 수정가공 알고리즘 (Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Table)

  • 박천홍;이찬흥;이후상
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.62-69
    • /
    • 2002
  • For improving the motion accuracy of hydrostatic table, corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. reverse analysis is performed firstly to estimate rail profile from measured linear and angular motion error, in the algorithm. For the next step, corrective machining information is decided as referring to the estimating rail profile. Finally, motion errors on correctively machined rail are analized by using motion error analysis method proposed in the previous paper. These processes can be iterated until the analized motion errors are satisfied with target accuracy. In order to verify the validity of the algorithm theoretically, motion errors by the estimated rail, after corrective machining, are compared with motion errors by true rail assumed as the measured value. Estimated motion errors show good agreement with assumed values, and it is confirmed that the algorithm is effective to acquire the corrective machining information to improve the accuracy of hydrostatic table.

반복학습에 의한 CNC 머시닝 센터의 원호 보간 오차 보정 (Circular interpolation error reduction of a CNC machining center by iterative learning)

  • 최종호;유경열;장태정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.830-835
    • /
    • 1993
  • The errors in machining process by CNC machining center are due to many elements, such as the delay of the servo drivers, friction and the gain mismatch between x-axis and y-axis motors and so on. We made a counter circuit to measure the output of motor encoders for the motion error analysis of a CNC machining center, and have measured the errors experimentally when the CNC performs a circular interpolation. We have also used an iterative learning method to reduce the radius errors and stick motion errors generated by the CNC machining center performing a circular interpolation. The proposed learning scheme worked well and the circle obtained has smaller error.

  • PDF

머시닝센터의 다축오차 평가 방법 (Evaluation Method of the Multi-axis Errors for Machining Centers)

  • 황주호;심종엽;고태조
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.904-914
    • /
    • 2011
  • The volumetric errors of CNC machining centers are determined by 21 errors, including 3 linear errors, 6 straightness errors, 3 perpendicular errors, 9 angular errors and non-rigid body errors of the machine tool. It is very time consuming and hard to measure all of these errors in which laser interferometer and other parts are used directly. Hence, as many as 21 separate setups and measurements are needed for the linear, straightness, angular and perpendicular errors. In case of the 5-axis machining centers, two more rotary tables are used. It can make 35 error sources of the movement. Therefore, the measured errors of multi movements of the 5-axis tables are very complicated, even if the relative measured errors are measured. This paper describes the methods, those analyze the error sources of the machining centers. Those are based on shifted diagonal measurements method (SDM), R-test and Double ball bar. In case, the angular errors of machine are small enough comparing with others, twelve errors including three linear position errors, six straightness errors and three perpendicular errors can be calculated by using SDM. To confirm the proposed method, SDM was applied to measuring 3 axes of machine tools and compared with directly measurement of each errors. In addition, the methods for measuring relative errors of multi-axis analysis methods using R-test and Double Ball Bar are introduced in this paper.