• Title/Summary/Keyword: Machining Characteristics

Search Result 1,093, Processing Time 0.023 seconds

A Study on the Surfaces Machining Characteristics of Ultra-precision through SEM Measurement (SEM 측정법에 의한 초정밀 표면가공 특성연구)

  • 강순준;오상록;이갑조;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.34-41
    • /
    • 2004
  • The purpose of this paper is to look at the characteristics of surface finishing which is one of the form accuracies and to obtain the fundamental technical data from the process of machining with diamond tool through experiment and theoretical analysis. The experiments were conducted with domestic made ultra-precision machine and MCD.PCD tool, with aluminum alloyed material and brass being used for the work pieces. The goal of the size accuracy was set to 100nm. The most suitable tool nose radius and machining conditions were selected, and the variations of the surface roughness were observed using SEM method while machining the distance of up to 500km. These data were evaluated and they examined the variation of the machined surfaces while cutting up to 500km of machining distance. At the same time, the state for the wear of diamond tool nose was analyzed and carefully examined through the newest measuring device. Additionally, the characteristics of ultra-precision machining technology were studied through visual analysis.

  • PDF

A Study on the characteristics of the High Speed Machining for several Tool Materials change of Ellipse Mirror Machining to be used in Millimeter Wave Interferometer System (밀리미터파 간섭계용 타원 반사경의 공구 변화에 따른 고속절삭 특성 연구)

  • Lee, Sang-Yong;Kim, Geon-Hee;Kim, Hyo-Sik;Yang, Soon-Cheol;Hong, Chang-Deoc;Cho, Byung-Moo;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.22-27
    • /
    • 2007
  • This study aims to find the optimal cutting conditions, when ellipse mirrors consisted Aluminum alloy were made it the Millimeter-Wave Interferometer System mirror with several tools on the High-Speed Machine. Machining technique for precision machining characteristics of ellipse mirrors consisted Al6061 matter by Ball endmill is reported in this paper., Results of machining on the High-Speed Machine(using NCD(Natural Crystalline diamond), WC and coated TiAlN ${\phi}6mm$ ball endmill tool) had measurement of surface roughness and form accuracy with cutting conditions(the Feed rate, the Depth of cut and the Cutting speed). the Millimeter-Wave Interferometer System ellipse mirror had been machined foundational precision machining characteristics of aluminum.

  • PDF

Characteristics of Chatter Stability Lobe in 2-DOF Machining System (2-DOF 가공시스템의 채터로브 거동연구)

  • Lee, Hyuk;Chin, Dohun;Yoon, Moonchul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.1-7
    • /
    • 2019
  • A chatter lobe analysis is frequently used to look at the chatter state. Even if there is a lot of research on chatter, chatter lobe characteristics are not well defined. In this study, the chatter lobe behavior according to several variables of vibration mode is verified for further clarity. The dynamic variables of the chatter model are defined and their behaviors on chatter lobe boundary are analyzed in detail. In this sense, the chatter model with 2-DOF (2-DOF) was used to analyze chatter stability characteristics. The discussed results are satisfying and these can be used for the prediction of chatter existence in machining processes of 2-DOF systems in several revolution range. These analyses indicate a better agreement for predicting an appropriate stability lobe over a wide detailed range of critical depths of cut in machining operation. The results allow an excellent prediction of chatter according to various static and dynamic variables in machining states. The behavior of chatter dynamic variables in machining were also discussed in detail. All these results can also be applied to other machining processes by establishing a chatter model in a 2-DOF system.

The Stress Distribution Characteristics of HSK Tooling System According to Spindle Speed (고속가공기용 HSK 툴링시스템의 주축회전속도에 따른 응력분포특성)

  • Ku, Min-Su;Kim, Jeong-Suk;Kang, Ik-Soo;Park, Jin-Hyo;Lee, Jong-Hwan;Kim, Ki-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.852-858
    • /
    • 2010
  • Recently, the high-tech industries, such as aerospace industry, auto industry, and electronics industry, are growing up considerably. Because of that, high machining accuracy and productivity of precision parts have been required. The tooling system is important part in the machining center. HSK tooling system is more suitable than BT tooling system for that of high speed machining center. It is because static stiffness and machining accuracy of HSK tooling system are higher than those of BT tooling system. In this paper, stress distribution characteristics of the HSK tooling System is analyzed according to the spindle speed. In order that, the mechanism and the force amplification principle of HSK tooling system are analyzed. The HSK tooling system is modelled by using a 3D modeling/design program. Then stress distribution characteristics of HSK tooling system are analyzed according to spindle speed by using the finite element analysis.

Comparison of Machinability Between PCD Tool and SCD Tool for Large Area Mirror Surface Machining Using Multi-tool by Planer (평삭공정에서 경면가공을 위한 단결정 및 다결정 다이아몬드 다중공구의 가공성 평가)

  • Kim, Chang-Eui;Choi, Hwan-Jin;Jeon, Eun-Chae;Je, Tae-Jin;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.297-301
    • /
    • 2013
  • Mirror surface machining for large area flattening in the display field has a problem such as a tool wear and a increase in machining time due to large area machining. It should be studied to decrease machining time and tool wear. In this paper, multi-tool machining method using a PCD tool and a SCD tool was applied in order to decrease machining time and tool wear. Machining characteristics (cutting force, machined surface and surface roughness) of PCD tool and SCD tool were evaluated in order to apply PCD tool to flattening machining. Based on basic experiments, the PCD/SCD multi-tool method and the SCD single-tool method were compared through surface roughness and machining time for appllying large area mold machining.

Micro Machining of Aluminium using Pulsed Laser Beam (레이저빔을 이용한 알루미늄의 미세가공)

  • Shin, Hong Shik
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.41-45
    • /
    • 2014
  • Micro fabrication technologies of aluminium have been required to satisfy many demands in technology fields. Pulsed laser beam machining can be an alternative method to accomplish the micro machining of aluminium. Pulsed laser beam can be applied to micro machining such as micro drilling and milling. Using pulsed laser beam, the machining characteristics of aluminium in micro drilling and milling were investigated according to average power, repetition rate, moving speed of spot. The laser beam machining with the optimal conditions can achieve precise micro figures. As a result, micro pattern, text and structures on aluminium surface was successfully fabricated by pulsed laser beam machining.

Environmentally Conscious High Speed Machining Characteristics of Aluminum Alloys(AC4C.1) (알루미늄 합금(AC4C.1)의 환경친화적 고속가공 특성)

  • Bae, Jung-Cheol;Hwang, In-Ok;Kang, Ik-Soo;Kim, Jung-Suk;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • Recently, environmental pollution has become a significant problem in industry and many researchers have investigated in order to preserve the environment. Environmentally conscious machining and technology have more important position in machining process, because cutting fluid has bad influence on the environment in milling process. This research is the experimental study on high speed machining of aluminum alloys through environmentally conscious machining. In this study, the surface roughness and chip appearance was investigated in the machining of aluminum alloys by dry machining, using cutting fluid and oil mist.

  • PDF

Environmentally Conscious High Speed Machining Characteristics of Aluminium Alloys(AC4C.1) (알루미늄 합금(AC4C.1)의 환경친화적 고속가공 특성)

  • 황인옥;강익수;강명창;김정석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.95-99
    • /
    • 2003
  • Recently, environmental pollution has become a significant problem in industry and many researches have been investigated in order to preserve the environment. Environmentally conscious machining and technology have more and more important position in machining process. The cutting fluid has greatly bad influence on the environment in the milling process. This research is experimental study on high speed machining of aluminum alloys through environmentally conscious machining. In this study, the machinability surface roughness and chip appearance was investigated in the machining of aluminum alloys applied dry machining and using cutting fluid, oil mist.

  • PDF

Determination of the Cutting Condition in High Speed-Machining Considering the Machining Efficiency (볼 엔드밀의 고속가공에서 가공능률을 고려한 가공조건의 선정)

  • 손창수;강명창;이득우;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.965-969
    • /
    • 1997
  • Due to the high feed rate,high speed machining (HSM) provide a great potential of rationalization for the machining Dies and Moulds. But determination of cutting condition is very difficult, because cutting mechanism of high speed machining is very complicated,especially using ball end-mill. This paoer gives a report on selection of the optimal cutting condition to improve the machining efficiency, And optimal machining condition is determined through the cutting force, FFT analysis of cutting force and surface roughness according to the cutting condition. Based on this experiment result,wear process and machining characteristics are evaluated.

  • PDF

Machining of Micro-scale Shapes using Micro-EDM Process (Micro-EDM 공정을 이용한 미세 형상 가공)

  • 김영태;박성준;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.109-117
    • /
    • 2003
  • With development of high advanced technologies and skills, micro machining techniques also are being more functional and smaller. Some of the recently developed micro machining technologies are micro drilling, micro EDM, WEDG, LBM, micro milling, micro UVM etc. In these micro machining techniques, Micro -EDM is generally used for machining micro holes, pockets, and micro structures in difficult-cut-materials. For machining micro structures, first of all, tool electrode should be fabricated by WEDG process. In micro-EDM, parameters such as peak current, pulse width, duration time are very important to fabricate the tool electrode and micro structures. Developed experimental equipments are composed of RLC circuit with PWM. In this paper, using developed micro EDM machine, the characteristics of micro electro discharge machining are investigated at micro holes, slot, and pocket machining etc. Also the trends of tool wear are investigated in case of hole and slot machining.