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1. Introduction

To better understand chatter behavior according to 

machining spindle speeds and depths of cut, the 

stability lobe using critical depth of cut, and 

spectrum analysis are frequently used in analysis of 

the chatter model[1-10]. However, detailed chatter 

behavior according to the first and second vibration 

mode variables of 2-DOF (2-DOF) systems have not 

been verified clearly until now. To characterize the 

stability lobe of chatter, a dynamic variable such as 

natural frequency and the damping of chatter models 

must be verified, and its behavior was analyzed in 

this study. Therefore, the chatter model of 2-DOF 

systems was used to analyze chatter stability 
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ABSTRACT

A chatter lobe analysis is frequently used to look at the chatter state [1-4]. Even if there is a lot of 

research on chatter,  chatter lobe characteristics are not well defined. In this study, the chatter lobe behavior 

according to several variables of vibration mode is verified for further clarity. The dynamic variables of the 

chatter model are defined and their behaviors on chatter lobe boundary are analyzed in detail. In this sense, 

the chatter model with 2-DOF (2-DOF) was used to analyze chatter stability characteristics [4]. The discussed 

results are satisfying and these can be used for the prediction of chatter existence in machining processes of 

2-DOF systems in several revolution range. These analyses indicate a better agreement for predicting an 

appropriate stability lobe over a wide detailed range of critical depths of cut in machining operation. The 

results allow an excellent prediction of chatter according to various static and dynamic variables in machining 

states. The behavior of chatter dynamic variables in machining were also discussed in detail. All these results 

can also be applied to other machining processes by establishing a chatter model in a 2-DOF system.
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characteristics and to identify machining stability. 

The discussed results can be used for the prediction 

of chatter existence in a wide range of spindle 

speeds and depths of cut in the machining process. 

These results indicate a better agreement in 

obtaining appropriate stability boundary lobe 

behavior over a detailed range of spindle speeds and 

critical depths of cut. Finally, the results show an 

excellent prediction of chatter according to various 

static and dynamic variables in several chatter 

models. The behaviors of each dynamic variable of 

chatter in machining were also analyzed in detail. 

Each variable is supposed to influence the stability 

boundary and are proven to be realistic for changing 

the chatter stability boundary. With this study, 

chatter states are more easily discerned in cutting 

conditions by modeling in a 2-DOF system. Also, 

for easy prediction of boundary, the stability lobe 

boundary analysis program was developed by using 

a 2-DOF system; the results of each degree of 

model effect can be analyzed and be used later for 

easy prediction of stability lobe analysis. After all, 

their stability lobe boundaries can be displayed by 

using the developed program.

2. Chatter Analysis

2.1 Stability lobe of 2-DOF system

Fig. 1 Chatter model of a 2-DOF cutting system

The basic chatter model of a 2-DOF system is 

shown as in Fig. 1. It has stiffness and damping in 

each direction in the model. The transfer function, 

(j ), of the chatter model may be summarized as Φ ω

follows[4]. In this case, an oriented structural transfer 

function of the model into the direction of chip 

thickness must be considered and the amplitude and 

phase of the vibration system are considered, 

respectively[4].
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With the oriented transfer function, the negative 

real part of the complete transfer function around all 

dominant modes must be scanned using the same 

procedure as the cutting process. The machining 

process with a 2-DOF system is shown in Fig. 1, 

and the natural frequency and damping into the 

direction x1 and x2 may be given. The cutting force 

Fy = Kf a h(t) and the cutting constant Kf = 

1.0×106 N/m2, width of cut a, and depth of cut h(t)

are given. The coordinate angle condition of  = 

30o and  = -45o are each given respectively and 

these angles also move the boundary upward or 

downward. In this case, the real and imaginary FRF

and stability lobe of the system can be plotted. The 

system flexibilities in directions x1 and x2, may be 

obtained. Therefore, the real part of the oriented 

transfer function between the displacement in the 

y-direction and the cutting force Fy is obtained by 

Eq. (1), and the FRF of the real part, the imaginary 

part, and its power of oriented transfer function is 

given as Fig. 2.   
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Fig. 2 Predicted power, real, imaginary part of 2-DOF 

system

  Also, it shows the frequency response functions 

of real part  , imaginary part   and its 

power spectra in revolution range of machining 

according to integer k which is used in the solution 

of characteristic equation. From the characteristic 

equation, the following critical depth of cut may be 

summarized as Eq. 3[4].

lim   

 


  By substituting the real part,  , the 

boundary of stability lobe can be obtained according 

to several variables such as cutting constant, 

stiffness, and damping into x and y direction. The 

stability lobe is configured as Fig. 3; it may be 

obtained by superposing all the boundaries-the 

lowest corresponding stability boundary can be 

configured. And the stability lobes are obtained with 

blue line boundary as in Fig. 3 The effect of , 

which is correlated with a workpiece material, must 

be investigated in the lobe boundary with different 

cutting constant as in Fig. 4. 

Fig. 4 shows a stability lobe boundary according 

to cutting constant of a machining system with some 

Fig. 3 Predicted stable boundary curve of a 2-DOF 

system

Fig. 4 Stability boundary curve according to cutting 

constant Kc

material. As cutting constant() increases, the stable 

region decreases because of the strong force in the 

same stiffness machining condition. Fig. 4 shows a 

stability lobe boundary according to different cutting 

constants. As a cutting constant  increases in 

general, the stable region becomes wider and lower 

as in Fig. 4. The different detailed behaviors of 

boundary shape were obtained by solving the 

characteristic equation and it may be discussed in the 

figures. The machining system has stiffness in each 

direction for a 2-DOF system. Therefore, each of its 

effects on stability boundary may change and it must 

be investigated in detail. Fig. 5(a) and Fig. 5(b) show 
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stability lobe boundaries according to the  1st  and 

2nd  modes of stiffness. As the stiffness of each of 

the first and second modes increase, the boundary 

moves upward, and the unstable region increases and 

becomes wider in the right side. In Fig. 5(a) and Fig. 

5(b), the stability lobe boundaries according to 

stiffness of the 1st  and 2nd  modes are shown in 

detail in their respective figures. 

As stiffness of each mode increases, both stable 

regions increase too. Furthermore, the different 

shapes of double convex behavior downward appear 

for lower stiffness in the given spindle revolution 

range.

(a) Stability boundary according to stiffness K1y

(b)  Stability boundary according to stiffness K2y

Fig. 5 Stability region according to variables of 

chatter condition

Fig. 6 Stability boundary according to 1st mode 

frequency, f1.

Fig. 7 Stability boundary according to 2nd mode 

frequency, f2.

  The effect of mode frequency was also 

investigated in this study and their behaviors also 

appear in the case of lower damping ratios for the

1st and 2nd modes in Fig. 8 and Fig. 9, respectively. 

The given machining system has natural frequency 

and damping in each direction. The mode frequency 

and damping in each mode also have some effect 

on the stability boundary and it must also be 

investigated. Therefore, their effects on the stability 

lobe boundary was investigated in detail. Fig. 6 

shows the stability lobe boundary of the 1st mode 

of natural frequency. As the natural frequency of 
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the 1st mode increases, the unstable region decreases 

into the downward right region too. It means that a 

higher natural frequency of the 1st mode causes a 

wider unstable region in the lobe boundary; 

therefore, it is necessary to have a lower natural 

frequency in the system to get a wider stable region 

same as the other given conditions. 

  Fig. 7 also shows stability lobe boundary 

according to the 2nd mode frequency. As the 2nd 

mode frequency increases, the stable region 

decreases downward. Therefore a higher natural 

frequency in the 2nd mode may also cause a smaller 

unstable region in the lobe. It also moves the 

boundary curve downward and incurs a wider stable 

region. And it is necessary to have higher natural 

frequency to get a wider stable region in the same 

condition. Fig. 6 and Fig. 7 show the stability lobe 

boundary according to 1st and 2nd mode respectively. 

As the natural frequency of each mode increases, 

the stable region, in both cases, increases into a 

downward convex shape. 

  The damping effect on stability boundaries was in 

investigated in Fig. 8 and in Fig. 9. Fig. 8 shows a 

stability lobe boundary according to damping of the 

1st mode. The damping of 1st mode also influences 

stability boundary. As the damping of 1st mode 

increases, the boundary moves upwards, and the 

stable region increases too. However, different 

behavior of the right-side lobe shape appears for the 

first damping, ζ1, in the solution of the 

characteristic equation for the low integer k = 3. A 

further boundary of higher k can be generated in 

the left side successively, and each boundary can be 

generated as shown by superposing as in Fig. 8. It 

also shows a stability lobe boundary of a 2-DOF 

chatter system. The lobe for k = 1 appears in 

right-side at a higher revolution, ranging up above 

1450 rpm, in figure according to 1st damping ζ1. 

The lower damping decreases the stable region and 

it moves the lobe boundary downwards in each 

revolution range. Also, by considering all the 

Fig. 8 Approximate stability lobe behavior according 

to damping

Fig. 9 Approximate stability lobe behavior according 

to damping.

solutions of the characteristic equation, at an integer 

for k = 1 to k = 7 , it can discriminate between …

the stable region and unstable one. The stability 

lobe boundary may be configured by supposing the 

boundaries by selecting the lowest boundary line. 

The effect of the 2nd mode of damping on stability 

boundaries has also has been investigated in detail. 

Fig. 9 shows a stability lobe boundary of a chatter 

model of a 2-DOF system  according to the 2nd 

mode damping ζ2. The higher second damping also 

increases the stability region in the revolution range 

as in Fig. 9, but the shape of Fig. 9 is a little bit 
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different compared to Fig. 8 which shows the 1st 

mode boundary. 

Comparing to the 1st mode damping, the stable 

boundaries of the 2nd mode of damping decreases the 

stable region of a boundary in a simpler shape. A 

lower 2nd mode of damping also moves boundary 

downwards in the revolution range and this can be 

seen clearly in Fig. 9. Considering all cases of 

integer k = 1 to k = 7 , the lobe boundary may …

be configured in the lowest trajectory by superposing 

each curve. By superposing each curve, the total 

stable region boundary can be configured completely. 

The completed stable region is seen in Fig. 9.

Fig. 10(a) shows a final stability lobe boundary of 

a chatter model of a 2-DOF system. The lobe of 

integer k = 1 appears in a higher revolution, 

ranging up above 1800 rpm in Fig. 10(a). The lobe 

of integer k = 2 appears in the revolution ranging 

above 1200 rpm to 3000 rpm in Fig. 10(a). For the 

integer k = 3, the lobe boundary only appears 

above 900 rpm. Considering all integers k = 1 to k

= 7 , the lobe boundary may be configured in a …

blue line as in Fig. 10(a). However, Fig. 10(b) 

shows the final stability lobe boundary of a chatter 

model in different conditions of smaller first 

damping (for ζ1=0.05) than that(for ζ1=0.2) of 

Fig.10(a). The lobe of integer k = 1 appears in 

higher revolutions ranging up above 1350 rpm in 

Fig. 10(b). The lobe of integer k = 2 appears in the 

revolution ranging above 900 rpm to 3000 rpm in 

Fig. 10(b). Also, for the integer of k = 3, the lobe 

boundary only appears above 700 rpm. Considering 

all integers for k = 1 to k = 7…, the lobe 

boundary may be configured in a blue downward 

line as Fig. 10(b). In these figures, it is shown that 

the stability region of Fig. 10(a) for 1=0.2, is ζ

wider than Fig. 10(b) for ζ1=0.05. Therefore, the 

increased critical depth of cut in a stable state can 

be accomplished by increasing 1st damping 

appropriately. By decreasing the damping ratio, 1, ζ

of the 1st mode, the lobe of the stable region may

(a)

(b)

Fig. 10 Approximate stability lobe behavior

change from Fig. 10(a) to Fig. 10(b) as shown. It 

shows that a stable region of a larger depth can 

exist in small damping. If the appropriate revolution 

is selected in machining considering these 

phenomena, and for k = 1, a double convex lobe 

boundary downward may appear as Fig. 10(b). 

Therefore, all phenomena may be superimposed, and 

the final boundary may be generated in every range 

of revolution.

3. Conclusion

In this study, the chatter characteristics of 2-DOF 

machining systems were evaluated by investigating 

the stable boundary curve and the following 
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conclusions were drawn:

1. According to various dynamic chatter variables, 

the stability behavior was investigated in detail. 

The lobe boundary and stability regions can be 

characterized clearly according to stiffness, 1st 

and 2nd modes damping, and the natural 

frequencies of 2-DOF chatter models in this 

study.

2. Small damping of 1st mode causes an irregular 

stability boundary in lobes because it supposes 

twin lobe boundaries at each integer k of the 

characteristic equation.

3. These results can be extended to characterize a 

detailed stable boundary region in machining 

operation in a wide range of cutting conditions 

considering both static and dynamics variables.
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