• 제목/요약/키워드: Machining Characteristics

검색결과 1,093건 처리시간 0.027초

휘싱 트래클 릴 프레임홀 면의 디버링특성 (Deburring Characteristics of Frame Hole in Fishing Trackle Reel)

  • 김정두
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.203-208
    • /
    • 1998
  • Materials of the Frame hole in fishing trackle reel is made up a number large and small holes. Thus, it is difficult to effective machining. Abrasive flow machining(AFM) is useful to polish a internal or external surface of the 3-dimensional shape parts, which are used in many fields such as aerospace, automative, semi-conductor, and medical component industries. The machining process is that two hydraulic cylinders, which are located face to face, enforce abrasive media to the passage between workpiece and tooling parts alternately, and then the abrasives include in the media pass the passage and polish the surface of workpiece. The media which is made of polymer and abrasives plays the role of the tool for deburring or polishing complex shap workpiece by its viscoelastic characteristics. In this study, the abrasive media for abrasive flow machining was made by mixing viscielastic polymer with alunina and silicon carbide abrasive. Also, we present AFM device design and preliminary results of an investigation in to some aspects of the AFM process performance in fishing trackle reel.

  • PDF

마이크로 엔드밀에 의한 미세격벽가공의 가공특성에 관한 연구 (A Study on the Machining Characteristics fur Micro Barrier Ribs by using Micro Endmilling)

  • 민승기;이선우;이동주;이응숙;제태진
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.14-20
    • /
    • 2002
  • Recently, miniaturization and mass production are the main trends in manufacturing fields. Therefore, ultraprecision machining and MEMS technology have been taken more 7md more important position in machining of microparts. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from duo parts to micro products, such as PDP md IT components, in precision products manufacturing. However, decreasing of burr is significant problem in making smooth and precise parts in micro endmilling. This paper shows removal characteristics of burr generated by micro endmilling process. This results satisfies micro endmilling for micro barrier ribs of heights is $50{\mu}m$, $100{\mu}m$, $200{\mu}m$, $300{\mu}m$, and observation from of burr. Additionally, it is necessary to understand the formation mechanism of burr of micro barrier ribs to iud proper decreasing method.

CNC 밀링에 의한 구면 가공시의 가공특성에 관한 연구 (A Study on the characteristics of the spherical surface machining in CNC milling)

  • 한흥삼;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.52-57
    • /
    • 1995
  • In order to suggest the proper cutting conditions of the CNC milling machining for the free-from surface, some experiments were carried out. In experiments, the influence of cutting conditions on the inclined spherical surface were examined by geometrical anlysis. In thos study, the roundness and cutting force were measured to know the effect of several cutting conditions on the machined surface and the cutting characteristics were carefully investigated. As the result, it was appeared that rigidder tool must be used and the cutting speed must be maintained constantlyfor more effective machining. It can be also known from the experiments that the improved machining surface obtained under about 80 degree, but coarse surface obtained over about 80 degree because of the existance of immproper shape of ball-end mill at the extreme portion.

  • PDF

STD-11 합금공구강과 P-20 초경합금재의 WEDM 특성에 관한 연구 (A Study on the Characteristics of Wire-Cut Electrical Discharge Machining for STD-11 Alloy Steel and P-20 Tungsten Carbide Alloy)

  • 이재명;허성중;김원일
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.22-28
    • /
    • 1996
  • From the experimental study of Wire-Cut Electric Discharge Machining of STD-11 alloy steel and P-20 tungsten carbide, the characteristics such as hand drum form and discharge gap have been observed and evaluated for various conditions. Hand drum form can be improved when gap have been observed and evaluated for various conditions. Hand drum form can be improved when gap voltage and spark cycle become smaller, thickness become thinner, wire tension become larger and the no of cutting increases. When 60mm thickness tungsten carbide is cut in normal condition, hand drum form becomes larger due to the low conductivity machining allowance become slightly larger when peak discharge current and gap voltage become larger, or wire tension becomes smaller. Under the same condition, machining allowance of tungsten carbide is larger than alloyed steel by 1/100mm.

  • PDF

입자 구형도에 따른 레이저 선가공의 비구형 흄 마이크로 입자 산포 특성 연구 (Dispersion Characteristics of Nonspherical Fume Micro-Particles in Laser Line Machining in Terms of Particle Sphericity)

  • 김경진;박중윤
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.1-6
    • /
    • 2022
  • This computational investigation of micro-sized particle dispersion concerns the fume particle contamination over target surface in high-precision laser line machining process of semiconductor and display device materials. Employing the random sampling based on probabilistic fume particle generation distributions, the effects of sphericity for nonspherical fume particles are analyzed for the fume particle dispersion and contamination near the laser machining line. The drag coefficient correlation for nonspherical particles in a low Reynolds number regime is selected and utilized for particle trajectory simulations after drag model validation. When compared to the corresponding results by the assumption of spherical fume particles, the sphericity of nonspherical fume particles show much less dispersion and contamination characteristics and it also significantly affects the particle removal rate in a suction air flow patterns.

유리의 미세 초음파 가공 시 입구 진원도 향상 및 출구 크랙방지 (Roundness Improvement and Exit Crack Prevention in Micro-USM of Soda-Lime Glass)

  • 홍지훈;김덕환;주종남;김보현
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.1039-1045
    • /
    • 2007
  • Ultrasonic machining (USM) is suitable for machining hard, brittle and non-conductive materials such as silicon, glass and ceramics. Usually, when micro holes are machined on glass by USM, roundness of hole entrance is poor and cracks appear around the hole exit. In this paper the machining characteristics were studied for roundness improvement and exit crack prevention. From experiments, the tool bending and the shape of tool tip affect hole roundness. When the tool tip is hemispherical, good roundness of holes was obtained. The feedrate and the rotational speed of the tool affect the exit crack. With the machining conditions of 150 rpm in spindle speed and $0.5\;{\mu}m/s$ in feedrate, micro holes with less than $100\;{\mu}m$ in diameter were machined without an exit crack.

고속가공 시스템의 정밀도 평가방법에 관한 연구 (A Study on the Accuracy Evaluation Method of High Speed Machining)

  • 손덕수;이안호;이정길;이우영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.335-340
    • /
    • 2004
  • KS and ISO have proposed several evaluation methods of conventional machine tools. Even though the accuracy of the tools can be evaluated with those methods, there are still no proper evaluation methods of high speed machining. Because it is hard to evaluate characteristics of high speed machining such as decrease of cutting temperature, cutting force, and reduced machining time. Therefore, new evaluation method for high speed machine should be developed. In this paper, several shapes of model have been proposed to evaluate cutting accuracy of high speed machine.

  • PDF

고속가공을 위한 정면밀링커터 바디시스템 개발 (Development of Face Milling Cutter Body System for High Speed Machining)

  • 장성민;맹민재;조명우
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.21-28
    • /
    • 2004
  • In modem manufacturing industries such as the airplane and automobile, aluminum alloys which are remarkable in durability have been utilized effectively. High-speed machining technology for surface roughness quality of workpiece has been applied in these fields. Higher cutting speed and feedrates lead to a reduction of machining time and increase of surface quality. Furthermore, the reduction of time required for polishing or lapping of machined surfaces improves the production rate. Traditional milling process for high speed cutting can be machined with end mill tool. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, face milling cutter which gives high MRR has developed face milling cutter body for the high speed machining of light alloy to overcome the problems. Also vibration experiment to detect natural frequency in free state and frequency characteristics during machining are performed to escape resonance.

티타늄합금 황삭가공에서 냉각방법에 따른 절삭공구 마모특성에 관한 연구 (A Study on Characteristics of Cutting Tool Wear by Cooling Method in Rough Machining of Titanium Alloy)

  • 김기하
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.129-134
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace important parts and automobile important parts, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting tool cooling method and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the feed rate, cutting time and spindle speed are raised.

ARMA 모델링과 스펙트럼분석법에 의한 가공시스템의 진단에 관한 연구 (A Study on Diagnostics of Machining System with ARMA Modeling and Spectrum Analysis)

  • 윤문철;조현덕;김성근
    • 한국생산제조학회지
    • /
    • 제8권3호
    • /
    • pp.42-51
    • /
    • 1999
  • An experimental modeling of cutting and structural dynamics and the on-line detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics of cutting process but also for the analytic realization of diagnostic systems. In this regard, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision round shape machining such as turning, drilling and boring in mold and die making. In this study, simulation and experimental work were performed to show the malfunctioned behaviors. For this purpose, two new recursive approach (REIVM, RLSM) were adopted fur the on-line system identification and monitoring of a machining process, we can apply these new algorithm in real process for the detection of abnormal machining behaviors such as chipping, chatter, wear and round shape lobe waviness.

  • PDF