• 제목/요약/키워드: Machining Center

검색결과 636건 처리시간 0.02초

세라믹 가공 장비(MCT)의 구조 안정화 설계 (Stability Design of a Machining Center for Ceramic Materials)

  • 윤재훈;한대성;윤현진;이일환
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.133-139
    • /
    • 2019
  • The utilizations of ceramics in the modern industries are increasing due to the desirable combinations of electrical, mechanical and physical properties found in ceramics. Ceramic materials are brittle, hard, strong in compression, weak in shearing and tension which is prone to affect the defects such as scratch, crack and breakage during the machining. Generally, the defects of the ceramic machining are generated from the structural vibrations of the machine. In this study, the dynamic characteristics of a machining center for ceramic machining were investigated to analyze the structural vibrations for the improved stability. Frequency response test and computer simulation have been conducted for the analysis and the design improvement. The improved design is suggested to suppress vibrations for the higher stability of the machine and further to reduce vibrations. And the result shows that simple design alterations without any change of major parts of the machine can reduce the vibration of the machine effectively.

머시닝센터 장착형 연마로봇의 성능 향상 및 연마 성능 평가 (Evaluation of Polishing Performance Using The Improved Polishing Robot System Attached to Machining Center)

  • 이민철;조영길;이만형
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.179-190
    • /
    • 1999
  • To automate the polishing process, a polishing robot with two axes which is attached to a machining center with three axes has been developed by our previous research. This automatic polishing robot is able to keep the polishing tool normal to the curved surface of die and is able to maintain a constant pneumatic pressure. Therefore, in the case of a curved surface die, the surface roughness to be polished by the system with five axes is improved superior than the surface by a three-axis machining center. However, because the polishing robot was big and heavy, a polishing workspace was limited and then it was difficult to attach the robot to machining center. In this study, the smaller and lighter polishing robot than the previous has been designed to improve defects due to the magnitude and weight of the robot. And the sliding mode control ins applied to polishing robot to improve the tracking performance. To obtain switching parameters of sliding mode control, the signal compression method is used. Code separation program to separate the date for a three-axis machining center and a two-axis polishing robot from a five-axis NC data is improved for users to check conveniently the separated trajectory and to handle many data by using the graphic user interface. To evaluate the polishing performance of the developed robot, the polishing experiment for shadow mask was carried out. The result shows the automatic polishing robot has a good trajectory tracking performance and obtains a good polished workpiece efficiently under recommended polishing conditions.

  • PDF

대면적 미세 가공공정 원천기술 개발 (Core Technology Development for Micro Machining Process on Large Surface)

  • 이석우;이동윤;송기형;강호철;김수진
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.769-776
    • /
    • 2011
  • In order to cope with the requirements of smaller patterns, larger surfaces and lower costs in the fields of displays, optics and energy, greater attentions is now being paid to the development of micro-pattern machining technology. Compared with flat molds, roll molds have the advantages of short delivery, ease of manufacturing larger surfaces, and continuous molding. This paper presents the state-of-the-art of the micro pattern machining technology on the roll molds and introduces some research results on the machining process technology. The copper and nickel-phosphorous-alloy plating process, machining process technology for uniform micro patterns. micro cutting simulation and the real time monitoring system for micro machining are summarized. The developed technologies have led the complete localization of the prism sheets and will be applied to the direct forming process with succeeding research & development.

범용 머시닝센터에서 주축증속기를 이용한 고속절삭에 관한 연구 -주축의 회전정도(Run-Out)가 가공특성에 미치는 영향 - (Study on the High-Speed Machining Using High Speed Tooling System in Machining Center)

  • 김경균;이용철;이득우;김정석;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.41-45
    • /
    • 1996
  • In order to realize the high-speed machining, the relative technologies for high speed machining tool and high speed machining are required now, The machining accuracy is influenced on the disturbance by the synchronized working conditions(cutting force, spindle Run-out, thermal deformation etc.) In this paper, the effect of spindle Run-out for the high speed machining is investigated. The results show that the spindle Run-out has a great influence on the machining accuracy in high speed machining.

  • PDF

반구상의 나선형 볼바측정을 통한 수직형 머시닝 센터의 오차 해석 및 보정 (Error Analysis and Compensation for the Volumetric Errors of a Vertical Machining Center Using Hemispherical Helix Ball Bar Test)

  • 양승한;김기훈;박용국
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.34-40
    • /
    • 2002
  • Machining accuracy is affected by quasi-static errors of machining center. Since machine errors have a direct influence upon both the surface finish and geometric shape of the finished workpiece, it is very important to measure the machine errors and to compensate these errors. The laser measurement method for identifying geometric errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the geometric errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving geometric errors using hemispherical helix ball bar test. As a result of experiment, geometric errors of the vertical machining center are compensated by 88%.

금형의 복합연마 특성에 관한 연구 (A Study on the Intergrated Finishing Characteristics for Dies and Molds)

  • 박준민;정해도
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.14-20
    • /
    • 1998
  • Automatic finishing process requires the development of high efficient and precision abrasive machining method for dies and molds. This study describes the evaluation of the finishing characteristics, such as surfrace roughness, topography and material removal depth of the electrolytic mixed abrasive machining methods. Experimental setup is composed of 3 axis machining center, a newly developed finishing attachment with constant pressure, electrode and electrolytic bath. Finally, we achieved a successful result that surface roughness is $0.01\mu$m Ra and material removal depth is $120\mu$m using electrolytic(0.8A. 30V) mixed abrasive (#400 CBN, #320 SiC) machining method.

  • PDF

금형의 복합연마 특성에 관한 연구 (A Study on the Intergrated Finishing Characteristics for Dies and Molds)

  • 박준민;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.937-941
    • /
    • 1997
  • Utomatic finishing process requires the development of high efficient and precision abrasive machining method for die and molds. This study describes the evaluation of the finishing characteristics, such as sufrace roughness, topography and material removal depth, of the electrolytic chemical mixed abrasive machining method. Experimental setup is composed of 3 axis machining center, a newly developed finishing attachment with constant pressure, electrode and electrolytic bath. Finally, we achieved a successful result that surface roughness is 0.01 .mu. m Ra and material removal depth is 145 .mu. m after 100 times repeat-finishing using electrolytic (0.8A,30V) mixed abrasive (#400 CBN, #320 Sic) machining method.

  • PDF

Ruled Surface로 형성된 임펠러 블레이드의 5-축 가공에 관한 연구 (A Study on the 5-Axis Machining of Impeller Blades with Ruled Surfaces)

  • 정대일;조현덕;윤문철;최두선;신보성;이응숙
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.175-180
    • /
    • 2000
  • This paper describes the method and the process for impeller machining on 5-axis CNC machining center. Also, The CAD/CAM software for the impeller post processing is developed. The software can be interfaced with Solid-works software for confirmation of the impeller shapes. In this study, blades on impeller is described from Ruled-surfaces between two Ferguson curves. In this study, using 5-axis NC part program obtained from the developed software, a sample impeller was machined on 5-axis CNC machining center. The machined impeller was very agreeable to the designed impeller. Thus, theories proposed in this study can be very useful for the 5-axis machining of impeller blades with Ruled-surfaces.

  • PDF

머시닝센터에서 고정밀 가공을 위한 NC 기술 (NC Technology for High-Precision Machining in Machining Centers)

  • 정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.748-754
    • /
    • 1994
  • This paper deals with a geometric error simulator, measurement and inspection of workpiece errors on the machine tools, and identification and compensation methodology of thermal errors in machining centers. In order to raise the machining accuracy of workpieces a measurement and inspection system on the machine tool is developed. By using MPPGT module Manual and CNC type CMMs are realized on the machining centers. To compensate for geometric and thermal deformation errors of machining centers, a real time and an off line geometric adaptive control system were developed on the machining centers. A vertical and a horizontal machining center equipped with FANUC 0MC were used for experiments. Performance of the systems were confirmed with a large amount of experiment.

  • PDF

고속가공기용 HSK 툴링시스템의 주축회전속도에 따른 응력분포특성 (The Stress Distribution Characteristics of HSK Tooling System According to Spindle Speed)

  • 구민수;김정석;강익수;박진효;이종환;김기태
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.852-858
    • /
    • 2010
  • Recently, the high-tech industries, such as aerospace industry, auto industry, and electronics industry, are growing up considerably. Because of that, high machining accuracy and productivity of precision parts have been required. The tooling system is important part in the machining center. HSK tooling system is more suitable than BT tooling system for that of high speed machining center. It is because static stiffness and machining accuracy of HSK tooling system are higher than those of BT tooling system. In this paper, stress distribution characteristics of the HSK tooling System is analyzed according to the spindle speed. In order that, the mechanism and the force amplification principle of HSK tooling system are analyzed. The HSK tooling system is modelled by using a 3D modeling/design program. Then stress distribution characteristics of HSK tooling system are analyzed according to spindle speed by using the finite element analysis.