• Title/Summary/Keyword: Machined Surface

Search Result 737, Processing Time 0.03 seconds

Effects of Nanopowder Additives in Micro-electrical Discharge Machining

  • Tan, Peng-Cheong;Yeo, Swee-Hock;Tan, Yie-Voon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.22-26
    • /
    • 2008
  • The use of electrical discharge machining (EDM) for micro-machining applications requires particular attention to the machined surface roughness and discharge gap distance, as these factors affect the geometrical accuracy of micro-parts. Previous studies of conventional EDM have shown that selected types of semi-conductive and non-conductive powder suspended in the dielectric reduced the surface roughness while ensuring a limited increase in the gap distance. Based on this, an extension of the technique to micro-EDM was studied Such work is necessary since the introduction of nanopowders suspended in the dielectric is not well understood. The experimental results showed that a statistically significant reduction in the surface roughness value was achieved at particular concentrations of the powder additives, depending on the powder material and the machining input energy setting. The average reduction in surface roughness using a powder suspended dielectric was between 14-24% of the average surface roughness generated using a pure dielectric. Furthermore, when these additive concentrations were used for machining, no adverse increase in the gap distance was observed.

Five-axis CL Data Generation by Considering Tool Swept Surface Model in Face Milling of Sculptured Surface (공구이동궤적 모델을 이용한 5축 페이스밀링 가공데이터 생성)

  • 이정근;박정환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • It is well known that the five-axis machining has advantages of tool accessibility and machined surface quality when compared with conventional three-axis machining. Traditional researches on the five-axis tool-path generation have addressed interferences such as cutter gouging, collision, machine kinematics and optimization of a CL(cutter location) or a cutter position. In the paper it is presented that optimal CL data for a face-milling cutter moving on a tool-path are obtained by incorporating TSS(tool swept surface) model. The TSS model from current CL position to the next CL position is constructed based on machine kinematics as well as cutter geometry, with which the deviation from the design surface can be computed. Then the next CC(cutter-contact) point should be adjusted such that the deviation conforms to given machining tolerance value. The proposed algorithm was implemented and applied to a marine propeller machining, which proved effective from a quantitative point of view. In addition, the algorithm using the TSS can also be applied to avoid cutter convex interferences in general three-axis NC machining.

Investigation for Mirror-surface Machining Properties of Mold Core of Glass Molding Press by Parallel Grinding and Magnetic Assistance Polishing (평행연삭과 자기연마에 의한 유리렌즈 성형용 코어 금형의 표면가공 특성)

  • Lee, Yong-Chul;Kim, Gyung-Nyun;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.22-27
    • /
    • 2010
  • The usage of ultra-precision machining is increasing by the manufacturing of precision optical elements such as camera lens, laser printer, CD player, DVD and microscope parts etc.. The WC alloy material is in wide use by mold core to improve the productivity and accuracy in manufacturing those precision parts. The WC alloy mould core can be machined effectively by the parallel grinding process which is an excellent technique for manufacturing of surface profile hard to machining materials such as the hardened metal alloy, Ceramics, Glass and so on. Magnetic assisted polishing as a final polishing process has also been utilized to obtain ultra-precision mirror surface with the elimination of traces presented on ground surface. It is able to deduce the optimal ultra-precision machining conditions of the WC alloy material from the experiment and analyses results.

Study on the Machinability of Pinus densiflora at Chunyang District for Wood Patterns - Cutting Force, Surface Roughness and Suface Phenomenon by Face Milling - (목형용(木型用) 춘양목(春陽木)의 절삭가공(切削加工) 특성(特性)에 관(關)한 연구(硏究)(제2보(第2報)) - 정면(正面)밀링 절삭(切削)에 의한 절삭저항(切削抵抗), 표면조도(表面粗度) 및 가공표면상태(加工表面狀態) -)

  • Kim, Jeong-Du
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.61-69
    • /
    • 1988
  • Recently the automization of wood manufacturing and the development of CNC machine tools becomes the center of interest. Cutting mechanism, tool wear and the roughness of machined surface have been studied. In the studies about wood for special uses, concrete data of cutting is desired. While Pinus densiflora is characterized that heartwood develops as age increases, Chunyang District has the characteristic of strength, red color, relatively regular chap and high heartwood - percentage. But there is no data about cutting this wood, Chunyang District. In this study face milling by sintered carbide tool was excuted to Chunyang District. Cutting force, Surface roughness and states were investigated with regard to cutting speed. Example results were as follows; 1) Mean cutting resistance against lateral component force and longitudinal component force decreased rapidly up to cutting speed of 155 m/min, and remains constant above this speed. 2) The surface roughness of cutting surface lowered as cutting speed increased, regardless of fiber formation. Radial rougness of fiber is larger than lineal surface roughness. 3) Increase in Cutting speed made machining mark restrained. Down-milling showed larger marks than up-milling.

  • PDF

Determination of the Optimum Feed Rate by a Surface Roughness Model in a Face Milling Operation (표면노조 모델을 이용한 졍면밀링에서의 최적 이송속도 선정)

  • Baek, Dae-Kyun;Ko, Tae-Jo;Kim, Hee-Sool
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2508-2515
    • /
    • 1996
  • Determination of an optimal feed rate is valuable in the sense of the precision and efficient machining. In this regard, a new surface roughness model for the face milling operation that considered the radial and axal runouts of the inserts in the cutter body was developed. The validity of the model was proved through the cutting experiments, and the model is able to predict the real machined surface roughness exactly with the information of the insert runouts and the cutting conditions. From the estimated surface roughness value, the maximum feed rate that obtains a maximum naterial removal rate under the given surface roughness constraint can be selected by using a bisection method. Therefore, this mehod for optimizing the feed rate can be well applied to the using a bisection method. Therefore, this method for optimizing the feed rate can be well applied to the using selsction of the cutting condition during the NC data generation in CAM.

Predictive modeling of surface roughness and material removal In powder blasting of glass by design of experiments (파우더 블라스팅을 이용한 유리 가공시 실험계획법에 의한 가공면 분석)

  • Jin Quan-Qia;Kim J.K.;Han J.Y.;Seong E.J.;Park Dong-Sam;Yoo W.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.681-684
    • /
    • 2005
  • The old technique of sandblasting which has been used for paint or scale removing, deburring, and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than 100um. A large number of Investigations on the abrasive jet machining with output parameters as material removal rate, penetrate and surface finish have been carried out and reported by various authors. In this paper, we investigated the effect of surface characteristics and surface shape of the abrasive jet machined glass surface under different blasting parameter. and finally we established a model for abrasive flow machining process, and compared with experimental results.

  • PDF

Improving Dimensional Accuracy of Micropatterns by Compensating Dynamic Balance of a Roll Mold (롤금형의 동적밸런스 보정을 통한 미세패턴 형상정밀도 향상)

  • Lee, Dong-Yoon;Hong, Sang-Hyun;Song, Ki-Hyeong;Kang, Eun-Goo;Lee, Seok-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.33-37
    • /
    • 2011
  • In the fields of display, optics, and energy, it is important to improve micropattern-machining technology for achieving small patterns, large surface areas, and low cost. Unlike flat molds, roll molds have the following advantages: they can be manufactured within a short time, larger surface areas can be obtained, and continuous molding can be achieved. In this study, we aim to investigate the causes for errors in the shapes for a micropattern-machining process, and we show that by compensating the dynamic balance of roll molds, the dimensional accuracy of machined parts can be improved. The experimental results show that dynamic-balance compensation for a roll mold reduced the mass unbalance and the vibrations of the roll mold, and as a result, the dimensional accuracy of machined micropatterns has been improved.

DESIGN AND FABRICATION OF INNER KONUS CROWN USING THREE DIMENSIONAL COMPUTER GRAPHICS (3차원 컴퓨터 그래픽 기술을 이용한 KONUS 내관의 설계와 제작)

  • Kim, In-Sup;Kim, Byung-Oh;Yoo, Kwan-Hee;Kang, Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.544-551
    • /
    • 2000
  • A fabrication method of inner and outer crown using CAD/CAM is presented. The information of abutment teeth is transferred to a computer through a 3-dimensional scanner. A Konus inner and outer crown is designed on a computer and a real crown is machined based on this design using CAM. This method can save laboratory time and reduce inaccuracies compare to conventional casting procedure. A stone model with six prepared abutment teeth from a patient was used in this study. Three dimensional information from the model was transferred to a computer using a contact type 3-dimensional scanner with a $25{\mu}m$ accuracy. All margins were identified on a computer image where there is a change in surface taper of a model. To provide a cement space, the image of a inner sur face of a Konus inner crown was duplicated $25{\mu}m$ apart from the surface of a prepared abutment teeth image. The cement space was $20{\mu}m$ at the cervical margin. All Konus crowns were machined with a $10{\mu}m$ accuracy. It was concluded that this method can reduce working-time for the laboratory process and increase accuracy. A further research is required to make a simplified process for a more complex prosthesis.

  • PDF

A systematic review of the survival rate on short implants (짧은 임플란트의 생존율에 관한 고찰)

  • Lee, Eun-Jeong;Kim, Won;Choi, Ji-Young;Kim, Seong-Mi;Oh, Nam-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.457-462
    • /
    • 2009
  • Purpose: The objective of this systematic review was to obtain the comprehensive survival rates of short implants. Then it was examined that whether treatment using short implants has favorable results. Methods: A MEDLINE search was performed, the data obtained from many articles about length, diameter, site of placement, surface treatment and prosthetic design were analyzed. Results and discussion: The data obtained from many articles were analyzed, and it was found that the survival rate of short implants was 95.87%, short implants has similar outcomes to those reported for standard implants. On the other hand, in the comparison the survival rate of 3 groups divided by the diameter of implants under 4 mm, 4-5 mm, and above 5 mm, a statistically significant difference was detected in under 4mm group. In implant group with 6-7 mm length, a group with 5-6 mm diameter has survival rate of 97.01%, groups with 3.1-4.8 mm diameter has survival rate of 92.96%, which was statistically significantly different. In the result of surface feature, the roughed surface groups of short implant showed a higher survival rate by approximately 6.3% than machined surface group. In the result of prosthetic design, survival rate of short implant was considerably lower for the single implant crown group (94.3%) than splinting group (99.4%).

Current Trends of Vibration-Assisted Machining in Micro/Nano Scales (초정밀 진동 보조 가공 연구 동향)

  • Lee, Moon-Gu;Jeon, Yong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.834-839
    • /
    • 2012
  • Recently, mechanical components with miniaturized size, complex shape and fine surface are on demand from industries such as mobile electronics, medical devices and defense. The size of them is smaller than several millimeters, the shape has micro-holes, curve, or multi-step and the surface is mirror-like. This features are not able to be machined with the conventional machining, therefore electro-discharge machining (EDM), cutting, and laser machining have been applied. If the technologies are assisted by vibration, high aspect ratio and good surface are to be achieved. In this paper, prior and current researches of vibration-assisted machining are reviewed. Machining mechanisms with vibration-assisting are explained, their effects are shown, and vibrating apparatuses are discussed. Especially, comparison between with and without vibration assisting is presented. This review shows the vibration-assisted machining is effectively fabricate the components with small and complicated shape and fine surface finish.