• Title/Summary/Keyword: Machined Surface

Search Result 737, Processing Time 0.031 seconds

High Speed Machining of the thin surface parts using liquid metal and selection of machining condition by Latin Square Method (Liquid metal을 이용한 고속 양면 가공 및 라틴 방격법에 의한 최적가공 조건 선정)

  • Lim, Pyo;Lee, Hi-Koan;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.99-106
    • /
    • 2005
  • This paper presents manufacture of mock-up by HSM and optimization of machining condition for high productivity in the view of manufacturing time and accuracy. The rapid machining of prototypes plays an important role in building mock-up. Rapid Prototyping(RP) is a technology to make prototype. But, it have many problems such as shrinkage. deformation and formation occurred by hardening of resin and stair shaping. On the contrary, high speed machining(HSM) technology has many advantages such as good quality, low cost and rapid machining time. HSM and RP is compared for machining efficiency. Experiments are designed by Latin Square Method and machining condition is optimized and selected by ANOVA. For example, propeller is machined by the surface machining of thin surface parts.

A Study on the Cylindrical Grinding Technology by Electrolytic In-Process Dressing(ELID) Method (전해인프로세스드레싱법에 의한 초정밀 원통 연삭기술 연구)

  • Je, Tae-Jin;Lee, Eung-Suk
    • 연구논문집
    • /
    • s.28
    • /
    • pp.59-71
    • /
    • 1998
  • The ELID(electrolytic in-process dressing) grinding method is a new precision grinding technique with the special electrolytic in-process dressing by metal bonded grinding wheel, fluid, and power supply. It is possible to make a efficient precision machining of hard and brittle materials such as ceramics, hard metals, and quenched steels by using this method, In this study, a new efficient precision grinding method with ELID was attempted for application to the machining and finishing processes of cylindrical structural components. And, we try to develop the cylindrical grinding technique for mirror surface of ceramics, tungsten carbide and SCM steel, and for the high efficiency grinding of machined parts, for example, ball screw shaft. Electrical characteristics of three different wheel grit sizes of #325, #2000 and #4000 were investigated experimentally. ELID grinding method is proved to be useful for mirror surface generation and efficient machining.

  • PDF

The Characteristics of Wire Electrical Discharge Machining and Final Surface Grinding for Titanium Alloy (티타늄합금의 와이어 방전가공과 후처리 연삭가공 특성)

  • 왕덕현;김원일;김종업
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.10-16
    • /
    • 2002
  • Titanium alloys have the characteristics of lightness, high strength and good corrosion resistant and are broadly used in manufacturing parts for military and aerospace industries. These alloys are also recognized for organism materials comparatively and used as fixing ones in human body. Nevertheless titanium alloys have excellent properties, it is difficult to machine by traditional methods because of high hardness and chemically activated property. So higher tool wear is expected when cutting by conventional tools, so it is required nontraditional machining process. Finally, the mechanical characteristics such as surface roughness, shape and hardness on studied for wire electrical discharge machined and pound surfaces of titanium alloys for different heat-tested conditions.

A Research on the Change of Cutting Characteristics in Hardened A17075-T6 Depending on Turning Conditions (선반 가공조건에 따른 경화처리된 A17075-T6 소재의 가공특성 변화에 관한 연구)

  • Lee, Hee-Deok;Kim, Jeong-Suk;Jeong, Ji-Hoon;Im, Hak-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.144-149
    • /
    • 2012
  • The cutting characteristics of hardened aluminum alloy A17075-T6 were investigated during turning processing. Under variation conditions of cutting speed, depth of cut, and feed rate, the characteristics of cutting force, surface roughness, and machined texture were investigated. Surface roughness became worse in proportion to the increase of the feed rate. The thickness of material alteration layer which is derived from the effect of cutting force was the biggest when feed rate 0.148mm/rev. This research confirmed that the deformed layer is dominantly dependent on the variation of feed rate.

A Study on Reverse Engineering and 5-axis NC Machining of Impeller (임펠러의 역공학과 5축가공에 관한 연구)

  • 장동규;신재광;홍성균;이희관;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.60-68
    • /
    • 2004
  • This paper presents a method fur impeller modeling and 5-axis machining by the reverse engineering. The impeller is composed of pressure surface, suction surface and leading edge, and so on. The surfaces can be modeled by using the characteristic curves such as hub curves, shroud curves and fillet curves. The characteristic curves are extracted from the scanned data and the inspection is performed between the surfaces generated by using the characteristic curves and the scanned data. Then, An impeller is machined by 5-axis mainlining and post-processing with inverse kinematic solution.

Study on the Masking Effect of the Nanoscratched Si (100) Surface and Its Application to the Maskless Nano Pattern fabrication (마스크리스 나노 패턴제작을 위한 나노스크래치 된 Si(100) 표면의 식각 마스크 효과에 관한 연구)

  • 윤성원;강충길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.24-31
    • /
    • 2004
  • Masking effect of the nanoscratched silicon (100) surface was studied and applied to a maskless nanofabrication technique. First, the surface of the silicon (100) was machined by ductile-regime nanomachining process using the scratch option of the Nanoindenter${ \circledR}$ XP. To clarify the possibility of the nanoscratched silicon surfaces for the application to wet etching mask, the etching characteristic with a KOH solution was evaluated at room temperature. After the etching process, the convex nanostructures were made due to the masking effect of the mechanically affected layer. Moreover, the height and the width of convex structures were controlled with varying normal loads during nanoscratch.

Effects of Filtering System of Cutting Fluid on the Surface Quality of Plasma Etching Electrode (절삭유의 필터링 시스템이 플라즈마 에칭 전극의 표면 품질에 미치는 영향)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.46-50
    • /
    • 2018
  • The purpose of this study is to analyze effects of filtering system of cutting fluid which is used for machining silicon electrode. For the research, different sizes of filter clothes are applied to check grain size of sludge of cutting fluid. Surface roughness of machined workpiece, depth of damage inside of silicon electrode, and suspended solids of cutting fluid are experimented and analyzed. From these experiments, it is verified that filtering system of cutting fluid is very important factor for machining. Results of this study can affect various benefits to the semiconductor industry for better productivity and better atmospheric pollution in workplace.

A Study of Mechanical Machining for Silicon Upper Electrode (실리콘 상부 전극의 기계적 가공 연구)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.59-63
    • /
    • 2021
  • Upper electrode is one of core parts using plasma etching process at semiconductor. The purpose of this study is to analyze effects of cutting conditions for mechanical machining of silicon upper electrode. For this research, surface roughness of machined workpiece and depth of damage inside of silicon electrode are experimented and analyzed and different values of feed rate and depth of cut are applied for the experiments. From these experiments, it is verified that the surface roughness and internal damaged layer get worse according to take more fast feed rate. In conclusion, cutting condition is very important factor for machining. Results of this study can use to develop various parts which are made from single crystal silicon and affect various benefits to the semiconductor industry for better productivity.

A Study on the Burr Formation of Miniature Drilling process (미소 드릴링시의 Burr 형성에 관한 연구)

  • 박동삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.6-11
    • /
    • 1997
  • In most machining operations, undesirable burr are formed on the edge of the workpiece adjacent to the machined surface. Such burrs are often the cause of various problems during automatic maching process. Therefore, it is very important to know characteristics of burr formation in maching process. This paper describes characteristic of exit burrs generated during miniature drilling process. In particular, the effect of spindle speed, feedrate and drill diameter on burr formaton is investigated. The result showed that exit burr height increased significantly with increasing feedrate.

  • PDF

Surface Modeling and 5-axis NC machining of Automobile Tire Model (자동차 타이어 모델의 곡면 모델링 및 5축 NC 가공)

  • Lee, Cheol-Soo
    • IE interfaces
    • /
    • v.9 no.2
    • /
    • pp.129-141
    • /
    • 1996
  • Recently, the tire mold of a passenger car is made almost via aluminum casting, and it is necessary to prepare a master model of the tire for the casting. Because of the geometrical feature of tire, as well known, the master model must be machined by a 5-axis NC machine. The paper proposes a procedure to model and machine the master model. The approach includes (a) transformation of 2D drawing of tire into 3D geometry, (b) modeling surfaces of tire, and (c) inverse kinematics of a 5-axis NC machine. An implementation of the proposed procedure is also presented.

  • PDF