• Title/Summary/Keyword: Machine tool vibration

검색결과 373건 처리시간 0.037초

Desktop 가공기의 제어특성 평가 (The control characteristic evaluation of Desktop machine tool)

  • 박종영;이득우;김정석;정우섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.137-140
    • /
    • 2003
  • Recently, as the demand of small-sized precision parts is rising in precision industry such as mobile, automobile, optic. etc. the requirement of small-sized machine tool is increasing. Desktop machine tool define small-sized machine tool that is able to install in table. According to diminishing in size, Desktop machine tool is able to economize production cost by reducing work area and consuming electric power. But Desktop machine tool generates vibration in acceleration and deceleration modes by inertia force of moving part. Also vibration is generated when it move simultaneously two axis or three axis. Such generating vibration situation is reason of declining stiffness of machine tool structure because of smallizing in size. And this vibration has a large effect on precision of machining products. Therefore, evaluating of the control characteristic is necessary for minimizing vibration of machine tool as much as possible to accomplish precision machining of small-sized parts

  • PDF

초고속 공작기계용 Hybrid Poymer Concrete bed 의 설계와 제작 (Design and manufacture of hybrid polyrnerconcrete bed for high speed machine tool)

  • 서정도;임태성;이대길;김태형;박보선;최원선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.404-409
    • /
    • 2004
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool life. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. Also, co-cure bonding method for functional part mounting was exhibited experimentally, by which manufacturing time and cost for polymer concrete bed will be remarkably reduced.

  • PDF

Rigid Core 샌드위치 구조의 초고속 공작기계 베드 적용에 관한 연구 (Application of Sandwich Structure with Rigid Core for High Speed Machine Tool Bed)

  • 서정도;이대길;김태형;박보선;최원선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.113-116
    • /
    • 2003
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool lift. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was designed and manufactured for a high-speed gantry-type milling. Also. its dynamic characteristics were measured by modal tests.

  • PDF

모드합성법을 이용한 공작기계구조물의 동적 거동 해석 (Dynamic Analysis of Machine Tool Structure by Mode Synthesis Method)

  • 이영우;성활경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.261-265
    • /
    • 2002
  • In the machining tool avoid vibration problem have an effect on high precision as well as statical and thermal characteristics. Therefore overcome this problem is essential to advance of machine tool and machining skill. Even though vibration arises owing to a variety of causes, in this paper vibration analysis of column as a major part of machine tool structures is presented. At this procedure vibration analysis applied to mode synthesis method using a attachment mode .

  • PDF

발파진동으로 인한 공작기계 가공정도의 영향 평가 (Evaluation of the Influence of Blast Vibration on Machine Tool Accuracy)

  • 이진갑
    • 한국산학기술학회논문지
    • /
    • 제15권8호
    • /
    • pp.4790-4795
    • /
    • 2014
  • 공작기계는 기계산업의 생산 및 시제품가공 등에 널리 적용되고 있다. 폭발시 발생하는 지반진동은 인근 구조물의 손상이나 시설에 많은 영향을 미친다. 본 논문은 발파진동이 공작기계의 가공정밀도에 미치는 영향을 고찰하였다. 발파진동과 발파시 공작기계의 진동을 측정하였고, 진동허용치를 기준으로 평가하였다. 공작기계의 진동허용치를 기준으로 할 경우 본 연구에 사용된 공작기계의 발파시 진동허용치는 SLIGHTLY ROUGH~ROUGH에 해당된다. 발파진동이 반복될 경우 정밀도가 저하될 가능성이 많다.

TiC-SKH51 금속 복합재를 이용한 공작기계 주축 진동 억제에 관한 연구 (Suppression of Machine Tool Spindle Vibration by using TiC-SKH51 Metal Matrix Composite)

  • 배원준;김성태;김양진;이상관
    • Composites Research
    • /
    • 제33권5호
    • /
    • pp.262-267
    • /
    • 2020
  • 고속 가공과 저중량 설계에 대한 수요가 증가함에 따라, 공작기계 주축의 진동 발생 가능성이 증가하고 있다. 또한 초정밀 가공에서 주축의 진동은 공작물 표면 형상에 큰 영향을 끼치게 된다. 다양한 가공 공정의 가공 정밀도를 향상시키기 위해, 공작기계 주축 진동 문제를 해결하여야 한다. 이 논문에서, 공작기계 주축의 진동 억제를 위해 TiC-SKH51 금속 기지 복합재가 사용되었다. TiC-SKH51 복합재의 동적 특성을 확인하기 위해 충격 망치 시험을 수행하였다. FEA의 모드 분석 결과와 충격 망치 시험 결과를 비교하여 FEA의 신뢰성을 확인한 후, 공작기계 주축 모델의 해석이 실행되었다. FEA 결과로부터 진동 발생 억제를 위해 TiC-SKH51 복합재를 적용한 공작기계 주축이 사용될 수 있음을 확인하였다.

AE 및 Force 신호의 주파수분석에 의한 Chatter 진동의 감시 (Monitoring of Chatter Vibration by Frequency analysis of AE & Force Signals)

  • 조대현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.14-19
    • /
    • 2000
  • A machine tool has some serous stability problem in the from of tool chatter during the cutting process. Chatter vibration deteriorates the surface finish, reduce tool and machine life, accelerate machine tool system component wear, and may lead to an unacceptable noise sound in the working environment. In this study, in order to moni색 of the chatter vibration on the cutting process, the behavior of spectral density of AE signal and principal cutting force signal has been investigated. Furthermore, its reliability from obtained the results has been studied to evaluate and confirm the proposed method with the application procedure and the experimental results.

  • PDF

공작기계 채터진동 스마트 보정제어 기술 (Smart Compensation for Chatter Control of Machine-Tool)

  • 김동훈;송준엽;고동연
    • 한국정밀공학회지
    • /
    • 제32권1호
    • /
    • pp.9-16
    • /
    • 2015
  • The machining-chatter stands for a sudden relative vibration appeared between a material and a tool while processing with a machine. This chatter is key factor that seriously affects the quality of processed materials as well as being a factor which causes serious damages to the tool and the machine. This study is related to the monitoring and smart control of chatter problem that can compensate machining-chatter faster and produce processed goods with more precision by autonomous compensation. The above-mentioned machining-chatter compensator includes the chatter vibration sensor and the chatter compensator that estimates the compensation value according to the sensor detecting the chatter vibration of machine-tool and the chatter vibration detected from the sensor while having a feature of being organized by interlocking with the machine-tool controller.

초정밀 가공 기계의 진동 특성 해석 (Analysis on the Vibration Characteristics of Ultra Precision Machine Tools)

  • 김성걸;박영일;김석현
    • 산업기술연구
    • /
    • 제14권
    • /
    • pp.119-125
    • /
    • 1994
  • Ultra-precision machine tool equipped with the diamond bite tip is used to machine optical products, drums of VTR or computer hard disk. It needs nano technology in the surface roughness of workpiece. To perform the nano scale machining, ultra-precision machine tool must be designed and manufactured in consideration of the vibration characteristics. In this paper, using the finite element analysis, we investigate the modal parameters of the ultra-precision machine tool structures, which use cast iron, granite and alumina ceramic for the bed materials. To verify the numerical results, we manufacture a model of ultra-precision machine tool using granite bed and perform impulse test. Through the theoretical and experimental analyses, we could compare and estimate the vibration characteristics of the three models for the ultra-precision machine tools.

  • PDF