• 제목/요약/키워드: Machine optimization

검색결과 933건 처리시간 0.037초

가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계 (Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm)

  • 홍진현;박종권;최영휴
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

Linear Motor 이송계의 진동 최소화를 위한 이송속도 최적화 (A Study on the Feed Rate Optimization of a Linear Motored Feed Drive System for Minimum Vibrations)

  • 최영휴;홍진현;최응영;김태형;최원선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.321-325
    • /
    • 2004
  • Linear motor feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modem machine tools require high speed and high precision feed drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a linear motor, for its minimum vibrations. Firstly, a 4-degree-of-freedom lumped parameter model is proposed for the vibration analysis of a linear motor driven machine tool feed drive system. Next, a feed rate optimization of the feed slide is carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile with jerk continuity. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

Design optimization of turning machine process

  • T. Jagan;S. Elizabeth Amudhini Stephen
    • Coupled systems mechanics
    • /
    • 제13권3호
    • /
    • pp.219-229
    • /
    • 2024
  • By introducing optimization algorithms into the machining process, product quality can be improved, time saved, and costs reduced. The cutting speed and feed can be handled by the turning machine. The approach of optimizing is used to manage pyrotechnics, Lawler's, greedy, bacterial colony, elephant herding, ant lion, spiral, auction, and pattern search for these ten odd ways. Ten artificial optimization methodologies were used to investigate the time and cost of a turning machine. It has been discovered how to create the optimal turning machine procedure. The best solution approach for the turning machine process problem is found, and the results are verified using ANSYS.

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

베이지안 최적화를 통한 저서성 대형무척추동물 종분포모델 개발 (Development of benthic macroinvertebrate species distribution models using the Bayesian optimization)

  • 고병건;신지훈;차윤경
    • 상하수도학회지
    • /
    • 제35권4호
    • /
    • pp.259-275
    • /
    • 2021
  • This study explored the usefulness and implications of the Bayesian hyperparameter optimization in developing species distribution models (SDMs). A variety of machine learning (ML) algorithms, namely, support vector machine (SVM), random forest (RF), boosted regression tree (BRT), XGBoost (XGB), and Multilayer perceptron (MLP) were used for predicting the occurrence of four benthic macroinvertebrate species. The Bayesian optimization method successfully tuned model hyperparameters, with all ML models resulting an area under the curve (AUC) > 0.7. Also, hyperparameter search ranges that generally clustered around the optimal values suggest the efficiency of the Bayesian optimization in finding optimal sets of hyperparameters. Tree based ensemble algorithms (BRT, RF, and XGB) tended to show higher performances than SVM and MLP. Important hyperparameters and optimal values differed by species and ML model, indicating the necessity of hyperparameter tuning for improving individual model performances. The optimization results demonstrate that for all macroinvertebrate species SVM and RF required fewer numbers of trials until obtaining optimal hyperparameter sets, leading to reduced computational cost compared to other ML algorithms. The results of this study suggest that the Bayesian optimization is an efficient method for hyperparameter optimization of machine learning algorithms.

A Study on the Feed Rate Optimization of a Ball Screw Driven Machine Tool Feed Slide for Minimum Vibrations

  • Choi, Yong-Hyu;Choi, Hoon-Ki;Kim, Soo-Tae;Choi, Eung-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1028-1032
    • /
    • 2004
  • In order to prevent machine tool feed slide system from transient vibrations during operations, machine tool designers usually adopt some typical design solutions; box-in-box typed feed slides, optimizing moving body for minimum weight and dynamic compliance, and so on. Despite all efforts for optimizing design, a feed drive system may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slides system. This paper presents a feed rate optimization of a ball screw driven machine tool feed slide system for its minimum vibration. Firstly, a ball screw feed drive system was mathematically modeled as a 6-degree-of-freedom lumped parameter system. Next, a feed rate optimization of the system was carried out for minimum vibrations. The main idea of the feed rate optimization is to find out the most appropriate smooth acceleration profile with jerk continuity. A genetic algorithm was used in this feed rate optimization

  • PDF

볼스크류 이송계의 진동 최소화를 위한 이송속도 최적화 (A Study on the Feed Rate Optimization of a Ball Screw Feed Drive System for Minimum Vibrations)

  • 최영휴;홍진현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.962-966
    • /
    • 2004
  • Ball screw feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modern machine tools require high speed and high precision and drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slide system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a ball screw, for its minimum vibrations. Firstly, a 6-degree-of-freedom lumped parameter model was proposed for the vibration analysis of a ball screw driven machine tool feed drive system. Next, a feed rate optimization of the feed slide was carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile having finite jerk. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

머신러닝 앙상블을 활용한 공압기의 전력 효율 최적화 시뮬레이션 (Simulation for Power Efficiency Optimization of Air Compressor Using Machine Learning Ensemble)

  • 김주헌;장문수;최지은;허요섭;정현상;박소영
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1205-1213
    • /
    • 2023
  • This study delves into methods for enhancing the power efficiency of air compressor systems, with the primary objective of significantly impacting industrial energy consumption and environmental preservation. The paper scrutinizes Shinhan Airro Co., Ltd.'s power efficiency optimization technology and employs machine learning ensemble models to simulate power efficiency optimization. The results indicate that Shinhan Airro's optimization system led to a notable 23.5% increase in power efficiency. Nonetheless, the study's simulations, utilizing machine learning ensemble techniques, reveal the potential for a further 51.3% increase in power efficiency. By continually exploring and advancing these methodologies, this research introduces a practical approach for identifying optimization points through data-driven simulations using machine learning ensembles.

회전익기 엔진용 기어박스의 기어 매크로 치형 최적화 (Gear Macro Geometry Optimization of Rotorcraft Engine Gearbox)

  • 최재훈;이근호;손종현;문상곤;김재승;김수철
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.21-27
    • /
    • 2022
  • The rotorcraft engine gearbox transmits the power generated by the turboshaft engine to the rotor by reducing the rotational speed and increasing the torque. The core of the rotorcraft engine gearbox is lightweight performance, which requires maximum weight reduction within the range that meets various requirements and constraints. Therefore, lightweight design through gear macro geometry optimization is necessary. In this study, gear macro geometry optimization was performed to reduce the weight of a rotorcraft engine gearbox. NSGA-III was used for the optimization, resulting in a combination of the gear ratio and macro geometry that minimizes the weight of the total gear. In addition, the safety factor of the gears satisfied the given conditions.