• Title/Summary/Keyword: Machine method

Search Result 7,716, Processing Time 0.037 seconds

Comparison of shear bond strength according to various surface treatment methods of zirconia and resin cement types (지르코니아의 다양한 표면처리 방법과 레진시멘트 종류에 따른 전단결합강도 비교)

  • Bae, Ji-Hyeon;Bae, Gang-Ho;Park, Taeseok;Huh, Jung-Bo;Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.153-163
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of four surface treatment methods to improve zirconia roughness and three types of resin cement on the shear bond strength (SBS). Materials and methods: A total of 120 zirconia blocks were randomly divided into four surface treatments: non-treatment (Control), airborne-particle abrasion (APA) with 50 ㎛ Al2O3 (APA50), APA with 125 ㎛ Al2O3 (APA125), and ZrO2 slurry (ZA). Three resin cements (Panavia F 2.0, Superbond C&B, and Variolink N) were applied to the surface-treated zirconia specimens. All specimens were subjected to SBS testing using a universal testing machine. The surface of the representative specimens of each group was observed by scanning electron microscope (SEM). SBS data were analyzed with oneway ANOVA, two-way ANOVA test and post-hoc Tukey HSD Test (α=.05). Results: In the surface treatment method, APA125, APA50, ZA, and Control showed high shear bond strength in order, but there was no significant difference between APA125 and APA50 (P>.05). Also, ZA showed significantly higher shear bond strength than Control (P<.05). In the resin cement type, Panavia F 2.0, Superbond C&B, and Variolink N showed significantly higher shear bond strength in order (P<.05). In SEM images, the zirconia surfaces of the APA50 and APA125 showed quite rough and irregular shapes, and the zirconia surface of the ZA was observed small irregular porosity and rough surfaces. Conclusion: APA and ZrO2 slurry were enhanced the surface roughness of zirconia, and Panavia F 2.0 containing MDP showed the highest shear bond strength with zirconia.

On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning (근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여)

  • Park, Juhan;Kang, Minseok;Cho, Sungsik;Sohn, Seungwon;Kim, Jongho;Kim, Su-Jin;Lim, Jong-Hwan;Kang, Mingu;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.251-267
    • /
    • 2021
  • Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising from the partitioning of the measured net ecosystem CO2 exchange (NEE) into GPP and ecosystem respiration (RE). For two forests and two agricultural sites, we correlated the EC-derived GPP in various time scales with three different near-surface remotely sensed VIs: (1) normalized difference vegetation index (NDVI), (2) enhanced vegetation index (EVI), and (3) near infrared reflectance from vegetation (NIRv) along with NIRvP (i.e., NIRv multiplied by photosynthetically active radiation, PAR). Among the compared VIs, NIRvP showed highest correlation with half-hourly and monthly GPP at all sites. The NIRvP was used to test the reliability of GPP derived by two different NEE partitioning methods: (1) original KoFlux methods (GPPOri) and (2) machine-learning based method (GPPANN). GPPANN showed higher correlation with NIRvP at half-hourly time scale, but there was no difference at daily time scale. The NIRvP-GPP correlation was lower under clear sky conditions due to co-limitation of GPP by other environmental conditions such as air temperature, vapor pressure deficit and soil moisture. However, under cloudy conditions when photosynthesis is mainly limited by radiation, the use of NIRvP was more promising to test the credibility of NEE partitioning methods. Despite the necessity of further analyses, the results suggest that NIRvP can be used as the proxy of GPP at high temporal-scale. However, for the VIs-based GPP estimation with high temporal resolution to be meaningful, complex systems-based analysis methods (related to systems thinking and self-organization that goes beyond the empirical VIs-GPP relationship) should be developed.

An Outlier Detection Using Autoencoder for Ocean Observation Data (해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구)

  • Kim, Hyeon-Jae;Kim, Dong-Hoon;Lim, Chaewook;Shin, Yongtak;Lee, Sang-Chul;Choi, Youngjin;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.265-274
    • /
    • 2021
  • Outlier detection research in ocean data has traditionally been performed using statistical and distance-based machine learning algorithms. Recently, AI-based methods have received a lot of attention and so-called supervised learning methods that require classification information for data are mainly used. This supervised learning method requires a lot of time and costs because classification information (label) must be manually designated for all data required for learning. In this study, an autoencoder based on unsupervised learning was applied as an outlier detection to overcome this problem. For the experiment, two experiments were designed: one is univariate learning, in which only SST data was used among the observation data of Deokjeok Island and the other is multivariate learning, in which SST, air temperature, wind direction, wind speed, air pressure, and humidity were used. Period of data is 25 years from 1996 to 2020, and a pre-processing considering the characteristics of ocean data was applied to the data. An outlier detection of actual SST data was tried with a learned univariate and multivariate autoencoder. We tried to detect outliers in real SST data using trained univariate and multivariate autoencoders. To compare model performance, various outlier detection methods were applied to synthetic data with artificially inserted errors. As a result of quantitatively evaluating the performance of these methods, the multivariate/univariate accuracy was about 96%/91%, respectively, indicating that the multivariate autoencoder had better outlier detection performance. Outlier detection using an unsupervised learning-based autoencoder is expected to be used in various ways in that it can reduce subjective classification errors and cost and time required for data labeling.

KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain (KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용)

  • Kim, Donggyu;Lee, Dongwook;Park, Jangwon;Oh, Sungwoo;Kwon, Sungjun;Lee, Inyong;Choi, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.191-206
    • /
    • 2022
  • Recently, it is a de-facto approach to utilize a pre-trained language model(PLM) to achieve the state-of-the-art performance for various natural language tasks(called downstream tasks) such as sentiment analysis and question answering. However, similar to any other machine learning method, PLM tends to depend on the data distribution seen during the training phase and shows worse performance on the unseen (Out-of-Distribution) domain. Due to the aforementioned reason, there have been many efforts to develop domain-specified PLM for various fields such as medical and legal industries. In this paper, we discuss the training of a finance domain-specified PLM for the Korean language and its applications. Our finance domain-specified PLM, KB-BERT, is trained on a carefully curated financial corpus that includes domain-specific documents such as financial reports. We provide extensive performance evaluation results on three natural language tasks, topic classification, sentiment analysis, and question answering. Compared to the state-of-the-art Korean PLM models such as KoELECTRA and KLUE-RoBERTa, KB-BERT shows comparable performance on general datasets based on common corpora like Wikipedia and news articles. Moreover, KB-BERT outperforms compared models on finance domain datasets that require finance-specific knowledge to solve given problems.

A study on improving the accuracy of machine learning models through the use of non-financial information in predicting the Closure of operator using electronic payment service (전자결제서비스 이용 사업자 폐업 예측에서 비재무정보 활용을 통한 머신러닝 모델의 정확도 향상에 관한 연구)

  • Hyunjeong Gong;Eugene Hwang;Sunghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.361-381
    • /
    • 2023
  • Research on corporate bankruptcy prediction has been focused on financial information. Since the company's financial information is updated quarterly, there is a problem that timeliness is insufficient in predicting the possibility of a company's business closure in real time. Evaluated companies that want to improve this need a method of judging the soundness of a company that uses information other than financial information to judge the soundness of a target company. To this end, as information technology has made it easier to collect non-financial information about companies, research has been conducted to apply additional variables and various methodologies other than financial information to predict corporate bankruptcy. It has become an important research task to determine whether it has an effect. In this study, we examined the impact of electronic payment-related information, which constitutes non-financial information, when predicting the closure of business operators using electronic payment service and examined the difference in closure prediction accuracy according to the combination of financial and non-financial information. Specifically, three research models consisting of a financial information model, a non-financial information model, and a combined model were designed, and the closure prediction accuracy was confirmed with six algorithms including the Multi Layer Perceptron (MLP) algorithm. The model combining financial and non-financial information showed the highest prediction accuracy, followed by the non-financial information model and the financial information model in order. As for the prediction accuracy of business closure by algorithm, XGBoost showed the highest prediction accuracy among the six algorithms. As a result of examining the relative importance of a total of 87 variables used to predict business closure, it was confirmed that more than 70% of the top 20 variables that had a significant impact on the prediction of business closure were non-financial information. Through this, it was confirmed that electronic payment-related information of non-financial information is an important variable in predicting business closure, and the possibility of using non-financial information as an alternative to financial information was also examined. Based on this study, the importance of collecting and utilizing non-financial information as information that can predict business closure is recognized, and a plan to utilize it for corporate decision-making is also proposed.

End-use Analysis of Household Water by Metering (가정용수의 용도별 사용 원단위 분석)

  • Kim, Hwa Soo;Lee, Doo Jin;Kim, Ju Whan;Jung, Kwan Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.595-601
    • /
    • 2008
  • The purpose of this study is to investigate the trends and patterns of various kind of water uses in a household by metering in Korea. Water use components are classified by toilet, washbowl, bathing, laundry, kitchen, miscellaneous. Flow meters are installed in 140 household selected by sampling in all around Korea. The data are gathered by web-based data collection system from the year 2002 to 2006, considering pre-investigated data such as occupation, revenue, family members, housing types, age, floor area, water saving devices, education, miscellaneous. Reliable data are selected by upper fence method for each observed water use component and statistical characteristics are estimated for each residential type to determine liter per capita per day. Estimated domestic per capita day show an indoor water use with the range from 150 lpcd to 169 lpcd for each housing type as the order of high rise apartment, multi-house, and single house. As the order of consuming amount among water use components, it is investigated that toilet (38.5 lpcd) is the first, and the second is laundry water (30.8 lpcd), the third is kitchen (28.4 lpcd), the fourth is bathtub (24.7 lpcd), the next is washbowl (15.4 lpcd). The results are compared with water uses in U.K. and U.S. As life style has been changed into western style, pattern of water use in Korea is tend to be similar with the U.S. water use pattern. Compared with the surveying results by Bradley, on 1985. Thirty liter of total use increased with the advancement of economic level, and a little change of water use pattern can be found. Especially, toilet water take almost half part of total water use and laundry water shows lowest as 11% in surveying at the year of 1985. But, this study shows that 39 liter, 28% of toilet water, has been decreased by the spread of saving devices and campaign. It is supposed that the spread large sized laundry machine make by-hand laundry has been decreased and water use increased. Unit water amount of each end-use in household can be applied to design factor for water and wastewater facilities, and it play a role as information in establishing water demand forecasting and conservation policy.

Comparison of shear bond strength between various temporary prostheses resin blocks fabricated by subtractive and additive manufacturing methods bonded to self-curing reline resin (절삭 및 적층 가공법으로 제작한 임시 보철물 레진 블록과 재이 장용 자가중합 레진의 전단결합강도 비교)

  • Hyo-Min Ryu;Jin-Han Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.189-197
    • /
    • 2023
  • Purpose. This study aimed to compare and evaluate the shear bond strength between various temporary prostheses resin blocks fabricated by subtractive and additive manufacturing methods bonded to self-curing reline resin. Materials and methods. The experimental groups were divided into 4 groups according to the manufacturing methods of the resin block specimens and each specimen was fabricated by subtractive manufacturing (SM), additive manufacturing stereolithography apparatus manufacturing (AMS), additive manufacturing digital light processing manufacturing (AMD) and conventional self-curing (CON). To bond the resin block specimens and self-curing resin, the reline resin was injected and polymerized into the same location of each resin block using a silicone mold. The shear bond strength was measured using a universal testing machine, and the surface of the adhesive interface was examined by scanning electron microscopy. To compare between groups, one-way ANOVA was done followed by Tukey post hoc test (α = 0.05). Results. The shear bond strength showed higher values in the order of CON, SM, AMS, and AMD group. There were significant differences between CON and AMS groups, as well as between CON and AMD groups. but there were no significant differences between CON and SM groups (P > .05). There were significant differences between SM and AMD groups, but there were no significant differences between SM and AMS groups. The AMS group was significantly different from the AMD group (P < .001). The most frequent failure mode was mixed failures in CON and AMS groups, and adhesive failures in SM and AMD groups. Conclusion. The shear bond strength of SM group showed lower but not significant bond strength compared to the CON group. The additive manufacturing method groups (AMS and AMD) showed significantly lower bond strength than the CON group, with the AMD group the lowest. There was also a significant difference between the AMD and SM group.

Text Mining of Successful Casebook of Agricultural Settlement in Graduates of Korea National College of Agriculture and Fisheries - Frequency Analysis and Word Cloud of Key Words - (한국농수산대학 졸업생 영농정착 성공 사례집의 Text Mining - 주요단어의 빈도 분석 및 word cloud -)

  • Joo, J.S.;Kim, J.S.;Park, S.Y.;Song, C.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.2
    • /
    • pp.57-72
    • /
    • 2018
  • In order to extract meaningful information from the excellent farming settlement cases of young farmers published by KNCAF, we studied the key words with text mining and created a word cloud for visualization. First, in the text mining results for the entire sample, the words 'CEO', 'corporate executive', 'think', 'self', 'start', 'mind', and 'effort' are the words with high frequency among the top 50 core words. Their ability to think, judge and push ahead with themselves is a result of showing that they have ability of to be managers or managers. And it is a expression of how they manages to achieve their dream without giving up their dream. The high frequency of words such as "father" and "parent" is due to the high ratio of parents' cooperation and succession. Also 'KNCAF', 'university', 'graduation' and 'study' are the results of their high educational awareness, and 'organic farming' and 'eco-friendly' are the result of the interest in eco-friendly agriculture. In addition, words related to the 6th industry such as 'sales' and 'experience' represent their efforts to revitalize farming and fishing villages. Meanwhile, 'internet', 'blog', 'online', 'SNS', 'ICT', 'composite' and 'smart' were not included in the top 50. However, the fact that these words were extracted without omission shows that young farmers are increasingly interested in the scientificization and high-tech of agriculture and fisheries Next, as a result of grouping the top 50 key words by crop, the words 'facilities' in livestock, vegetables and aquatic crops, the words 'equipment' and 'machine' in food crops were extracted as main words. 'Eco-friendly' and 'organic' appeared in vegetable crops and food crops, and 'organic' appeared in fruit crops. The 'worm' of eco-friendly farming method appeared in the food crops, and the 'certification', which means excellent agricultural and marine products, appeared only in the fishery crops. 'Production', which is related to '6th industry', appeared in all crops, 'processing' and 'distribution' appeared in the fruit crops, and 'experience' appeared in the vegetable crops, food crops and fruit crops. To visualize the extracted words by text mining, we created a word cloud with the entire samples and each crop sample. As a result, we were able to judge the meaning of excellent practices, which are unstructured text, by character size.

Necessity to incorporate XR-based Training Contents Focused on Cable pulling using Winches in the Shipbuilding (윈치를 활용한 케이블 포설을 중심으로 고찰한 XR 기반 훈련 콘텐츠 도입의 필요성)

  • JongMin Lee;JongSeong Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.53-62
    • /
    • 2023
  • This paper has suggested the necessity of introducing training contents using XR(Extended reality) technology as a way to lower the high rate of nursing accidents among unskilled technical personnel in domestic shipbuilding industry, focusing on cable pulling using winch. The occurrence rate of nursing accidents in the domestic shipbuilding industry was almost double(197.4%) (2017~2020) when compared with other manufacturing industries. In particular, it is worth noting that more than 31.8% of nursing accidents in the shipbuilding industry occurred among workers whose job experience is no more than 6 months. Most of new workers are seen to have hard time due to several factors such as lack of work information, inexperience, and unfamiliarity with the working environments. This indicates that it is essential to incorporate more effective training method that could help new workers become familiar with technical skills as well as working environments in a short period of time. Currently, education/training at the domestic shipyard is biased toward technical skills such as welding, painting, machine installation, and electrical installation. Contrary, even more important training required to get new workers used to the working environment has remained at a superficial level such as explaining ship building processes using 2D drawings. This may be the reason why it is inevitable to repeat similar training at OJT (On-the-Job Training) even at the leading domestic companies. Domestic shipbuilding industries have been attracting a lot of new workers thanks to recent economic recovery, which is very likely to increase the occurrence of disasters. In this paper, the introduction of training using XR technology was proposed, and as a specific example, the process of pulling cables using winches on ships was implemented as XR-based training content by using Unity. Using the developed content, it demonstrated that new workers can experience the actual work process in advance through simulation in a virtual space, thereby becoming more effective training content that can help new workers become familiar with the work environment.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.