• Title/Summary/Keyword: Machine learning in healthcare

Search Result 98, Processing Time 0.03 seconds

Research Trend on Machine Learning Healthcare Based on Keyword Frequency and Centrality Analysis : Focusing on the United States, the United Kingdom, Korea (키워드 빈도 및 중심성 분석 기반의 머신러닝 헬스케어 연구 동향 : 미국·영국·한국을 중심으로)

  • Lee Taekkyeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.149-163
    • /
    • 2023
  • In this study we analyze research trends on machine learning healthcare based on papers from the United States, the United Kingdom, and Korea. In Elsevier's Scopus, we collected 3425 papers related to machine learning healthcare published from 2018 to 2022. Keyword frequency and centrality analysis were conducted using the abstracts of the collected papers. We identified keywords with high frequency of appearance by calculating keyword frequency and found central research keywords through the centrality analysis by country. Through the analysis results, research related to machine learning, deep learning, healthcare, and the covid virus was conducted as the most central and highly mediating research in each country. As the implication, studies related to electronic health information-based treatment, natural language processing, and privacy in Korea have lower degree centrality and betweenness centrality than those of the United States and the United Kingdom. Thus, various convergence research applied with machine learning is needed for these fields.

Trend of Utilization of Machine Learning Technology for Digital Healthcare Data Analysis (디지털 헬스케어 데이터 분석을 위한 머신 러닝 기술 활용 동향)

  • Woo, Y.C.;Lee, S.Y.;Choi, W.;Ahn, C.W.;Baek, O.K.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.98-110
    • /
    • 2019
  • Machine learning has been applied to medical imaging and has shown an excellent recognition rate. Recently, there has been much interest in preventive medicine. If data are accessible, machine learning packages can be used easily in digital healthcare fields. However, it is necessary to prepare the data in advance, and model evaluation and tuning are required to construct a reliable model. On average, these processes take more than 80% of the total effort required. In this study, we describe the basic concepts of machine learning, pre-processing and visualization of datasets, feature engineering for reliable models, model evaluation and tuning, and the latest trends in popular machine learning frameworks. Finally, we survey a explainable machine learning analysis tool and will discuss the future direction of machine learning.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

Development of ML and IoT Enabled Disease Diagnosis Model for a Smart Healthcare System

  • Mehra, Navita;Mittal, Pooja
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.1-12
    • /
    • 2022
  • The current progression in the Internet of Things (IoT) and Machine Learning (ML) based technologies converted the traditional healthcare system into a smart healthcare system. The incorporation of IoT and ML has changed the way of treating patients and offers lots of opportunities in the healthcare domain. In this view, this research article presents a new IoT and ML-based disease diagnosis model for the diagnosis of different diseases. In the proposed model, vital signs are collected via IoT-based smart medical devices, and the analysis is done by using different data mining techniques for detecting the possibility of risk in people's health status. Recommendations are made based on the results generated by different data mining techniques, for high-risk patients, an emergency alert will be generated to healthcare service providers and family members. Implementation of this model is done on Anaconda Jupyter notebook by using different Python libraries in it. The result states that among all data mining techniques, SVM achieved the highest accuracy of 0.897 on the same dataset for classification of Parkinson's disease.

Wearable Sensor based Gait Pattern Analysis for detection of ON/OFF State in Parkinson's Disease

  • Aich, Satyabrata;Park, Jinse;Joo, Moon-il;Sim, Jong Seong;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.283-284
    • /
    • 2019
  • In the last decades patient's suffering with Parkinson's disease is increasing at a rapid rate and as per prediction it will grow more rapidly as old age population is increasing at a rapid rate through out the world. As the performance of wearable sensor based approach reached to a new height as well as powerful machine learning technique provides more accurate result these combination has been widely used for assessment of various neurological diseases. ON state is the state where the effect of medicine is present and OFF state the effect of medicine is reduced or not present at all. Classification of ON/OFF state for the Parkinson's disease is important because the patients could injure them self due to freezing of gait and gait related problems in the OFF state. in this paper wearable sensor based approach has been used to collect the data in ON and OFF state and machine learning techniques are used to automate the classification based on the gait pattern. Supervised machine learning techniques able to provide 97.6% accuracy while classifying the ON/OFF state.

  • PDF

IoT-Based Health Big-Data Process Technologies: A Survey

  • Yoo, Hyun;Park, Roy C.;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.974-992
    • /
    • 2021
  • Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.

Emerging Machine Learning in Wearable Healthcare Sensors

  • Gandha Satria Adi;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.378-385
    • /
    • 2023
  • Human biosignals provide essential information for diagnosing diseases such as dementia and Parkinson's disease. Owing to the shortcomings of current clinical assessments, noninvasive solutions are required. Machine learning (ML) on wearable sensor data is a promising method for the real-time monitoring and early detection of abnormalities. ML facilitates disease identification, severity measurement, and remote rehabilitation by providing continuous feedback. In the context of wearable sensor technology, ML involves training on observed data for tasks such as classification and regression with applications in clinical metrics. Although supervised ML presents challenges in clinical settings, unsupervised learning, which focuses on tasks such as cluster identification and anomaly detection, has emerged as a useful alternative. This review examines and discusses a variety of ML algorithms such as Support Vector Machines (SVM), Random Forests (RF), Decision Trees (DT), Neural Networks (NN), and Deep Learning for the analysis of complex clinical data.

Comparison of Scala and R for Machine Learning in Spark (스파크에서 스칼라와 R을 이용한 머신러닝의 비교)

  • Woo-Seok Ryu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.85-90
    • /
    • 2023
  • Data analysis methodology in the healthcare field is shifting from traditional statistics-oriented research methods to predictive research using machine learning. In this study, we survey various machine learning tools, and compare several programming models, which utilize R and Spark, for applying R, a statistical tool widely used in the health care field, to machine learning. In addition, we compare the performance of linear regression model using scala, which is the basic languages of Spark and R. As a result of the experiment, the learning execution time when using SparkR increased by 10 to 20% compared to Scala. Considering the presented performance degradation, SparkR's distributed processing was confirmed as useful in R as the traditional statistical analysis tool that could be used as it is.

A Machine Learning Approach to Detect the Dog's Behavior using Wearable Sensors

  • Aich, Satyabrata;Chakraborty, Sabyasachi;Joo, Moon-il;Sim, Jong Seong;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.281-282
    • /
    • 2019
  • In recent years welfare of animals is the biggest challenge because animals, especially dogs are widely recognized as pet as well as they are using as service animals. So, for the wellbeing of the dog it is necessary to perform objective assessment to track their behavior in everyday life. In this paper, we have proposed an automatic behavior assessment system for dogs based on a neck worn and tail worn accelerometer and gyroscope platform, and data analysis techniques that recognize typical dog activities. We evaluate the system based on the analysis of 8 behavior traits in 3 dogs, incorporating 2 breeds of various sizes. Our proposed framework able to reproduce the manual assessment that is based on the video recording which is treated as gold standard that exhibits the real-life use case of automated dog behavior analysis.

  • PDF

Machine Learning Algorithm for Estimating Ink Usage (머신러닝을 통한 잉크 필요량 예측 알고리즘)

  • Se Wook Kwon;Young Joo Hyun;Hyun Chul Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.23-31
    • /
    • 2023
  • Research and interest in sustainable printing are increasing in the packaging printing industry. Currently, predicting the amount of ink required for each work is based on the experience and intuition of field workers. Suppose the amount of ink produced is more than necessary. In this case, the rest of the ink cannot be reused and is discarded, adversely affecting the company's productivity and environment. Nowadays, machine learning models can be used to figure out this problem. This study compares the ink usage prediction machine learning models. A simple linear regression model, Multiple Regression Analysis, cannot reflect the nonlinear relationship between the variables required for packaging printing, so there is a limit to accurately predicting the amount of ink needed. This study has established various prediction models which are based on CART (Classification and Regression Tree), such as Decision Tree, Random Forest, Gradient Boosting Machine, and XGBoost. The accuracy of the models is determined by the K-fold cross-validation. Error metrics such as root mean squared error, mean absolute error, and R-squared are employed to evaluate estimation models' correctness. Among these models, XGBoost model has the highest prediction accuracy and can reduce 2134 (g) of wasted ink for each work. Thus, this study motivates machine learning's potential to help advance productivity and protect the environment.