• Title/Summary/Keyword: Machine learning algorithm

Search Result 1,515, Processing Time 0.022 seconds

Artificial neural network for safety information dissemination in vehicle-to-internet networks

  • Ramesh B. Koti;Mahabaleshwar S. Kakkasageri;Rajani S. Pujar
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1065-1078
    • /
    • 2023
  • In vehicular networks, diverse safety information can be shared among vehicles through internet connections. In vehicle-to-internet communications, vehicles on the road are wirelessly connected to different cloud networks, thereby accelerating safety information exchange. Onboard sensors acquire traffic-related information, and reliable intermediate nodes and network services, such as navigational facilities, allow to transmit safety information to distant target vehicles and stations. Using vehicle-to-network communications, we minimize delays and achieve high accuracy through consistent connectivity links. Our proposed approach uses intermediate nodes with two-hop separation to forward information. Target vehicle detection and routing of safety information are performed using machine learning algorithms. Compared with existing vehicle-to-internet solutions, our approach provides substantial improvements by reducing latency, packet drop, and overhead.

Role of Radio Frequency Identification (RFID) in Warehouse and Logistic Management System using Machine Learning Algorithm

  • Laviza Falak Naz
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.109-118
    • /
    • 2024
  • The world today is advancing towards a digital solution for every indusial domain varying from advanced engineering and medicine to training and management. The supply cycles can only be boosted via an effective management of the warehouse and a stronger hold over the logistics and inventory insights. RFID technology has been an open source tool for various MNCs and corporal organization who have progressed along a considerable drift on the charts. RFID is a methodology of analysing the warehouse and logistic data and create useful information in line to the past trends and future forecasts. The method has a high tactical accuracy and has been seen providing up to 99.57% accurate insights for the future cycle, based on the organizational capabilities and available resources. This paper discusses the implementation of RFID on field and provides results of datasets retrieved from controlled data of a practical warehouse and logistics system.

Enhancing E-commerce Security: A Comprehensive Approach to Real-Time Fraud Detection

  • Sara Alqethami;Badriah Almutanni;Walla Aleidarousr
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.1-10
    • /
    • 2024
  • In the era of big data, the growth of e-commerce transactions brings forth both opportunities and risks, including the threat of data theft and fraud. To address these challenges, an automated real-time fraud detection system leveraging machine learning was developed. Four algorithms (Decision Tree, Naïve Bayes, XGBoost, and Neural Network) underwent comparison using a dataset from a clothing website that encompassed both legitimate and fraudulent transactions. The dataset exhibited an imbalance, with 9.3% representing fraud and 90.07% legitimate transactions. Performance evaluation metrics, including Recall, Precision, F1 Score, and AUC ROC, were employed to assess the effectiveness of each algorithm. XGBoost emerged as the top-performing model, achieving an impressive accuracy score of 95.85%. The proposed system proves to be a robust defense mechanism against fraudulent activities in e-commerce, thereby enhancing security and instilling trust in online transactions.

L1-penalized AUC-optimization with a surrogate loss

  • Hyungwoo Kim;Seung Jun Shin
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.2
    • /
    • pp.203-212
    • /
    • 2024
  • The area under the ROC curve (AUC) is one of the most common criteria used to measure the overall performance of binary classifiers for a wide range of machine learning problems. In this article, we propose a L1-penalized AUC-optimization classifier that directly maximizes the AUC for high-dimensional data. Toward this, we employ the AUC-consistent surrogate loss function and combine the L1-norm penalty which enables us to estimate coefficients and select informative variables simultaneously. In addition, we develop an efficient optimization algorithm by adopting k-means clustering and proximal gradient descent which enjoys computational advantages to obtain solutions for the proposed method. Numerical simulation studies demonstrate that the proposed method shows promising performance in terms of prediction accuracy, variable selectivity, and computational costs.

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.

Computer Vision Platform Design with MEAN Stack Basis (MEAN Stack 기반의 컴퓨터 비전 플랫폼 설계)

  • Hong, Seonhack;Cho, Kyungsoon;Yun, Jinseob
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.1-9
    • /
    • 2015
  • In this paper, we implemented the computer vision platform design with MEAN Stack through Raspberry PI 2 model which is an open source platform. we experimented the face recognition, temperature and humidity sensor data logging with WiFi communication under Raspberry Pi 2 model. Especially we directly made the shape of platform with 3D printing design. In this paper, we used the face recognition algorithm with OpenCV software through haarcascade feature extraction machine learning algorithm, and extended the functionality of wireless communication function ability with Bluetooth technology for the purpose of making Android Mobile devices interface. And therefore we implemented the functions of the vision platform for identifying the face recognition characteristics of scanning with PI camera with gathering the temperature and humidity sensor data under IoT environment. and made the vision platform with 3D printing technology. Especially we used MongoDB for developing the performance of vision platform because the MongoDB is more akin to working with objects in a programming language than what we know of as a database. Afterwards, we would enhance the performance of vision platform for clouding functionalities.

Diagnosis Method for Power Transformer using Intelligent Algorithm based on ELM and Fuzzy Membership Function (ELM 기반의 지능형 알고리즘과 퍼지 소속함수를 이용한 유입변압기 고장진단 기법)

  • Lim, Jae-Yoon;Lee, Dae-Jong;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.194-199
    • /
    • 2017
  • Power transformers are an important factor for power transmission and cause fatal losses if faults occur. Various diagnostic methods have been applied to predict the failure and to identify the cause of the failure. Typical diagnostic methods include the IEC diagnostic method, the Duval diagnostic method, the Rogers diagnostic method, and the Doernenburg diagnostic method using the ratio of the main gas. However, each diagnostic method has a disadvantage in that it can't diagnose the state of the power transformer unless the gas ratio is within the defined range. In order to solve these problems, we propose a diagnosis method using ELM based intelligent algorithm and fuzzy membership function. The final diagnosis is performed by multiplying the result of diagnosis in the four diagnostic methods (IEC, Duval, Rogers, and Doernenburg) by the fuzzy membership values. To show its effectiveness, the proposed fault diagnostic system has been intensively tested with the dissolved gases acquired from various power transformers.

A Two-Stage Document Page Segmentation Method using Morphological Distance Map and RBF Network (거리 사상 함수 및 RBF 네트워크의 2단계 알고리즘을 적용한 서류 레이아웃 분할 방법)

  • Shin, Hyun-Kyung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.547-553
    • /
    • 2008
  • We propose a two-stage document layout segmentation method. At the first stage, as top-down segmentation, morphological distance map algorithm extracts a collection of rectangular regions from a given input image. This preliminary result from the first stage is employed as input parameters for the process of next stage. At the second stage, a machine-learning algorithm is adopted RBF network, one of neural networks based on statistical model, is selected. In order for constructing the hidden layer of RBF network, a data clustering technique bared on the self-organizing property of Kohonen network is utilized. We present a result showing that the supervised neural network, trained by 300 number of sample data, improves the preliminary results of the first stage.

Application of Artificial Neural Networks to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

  • Oh, Sang Hoon;Kim, Kyungmin;Harry, Ian W.;Hodge, Kari A.;Kim, Young-Min;Lee, Chang-Hwan;Lee, Hyun Kyu;Oh, John J.;Son, Edwin J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.107.1-107.1
    • /
    • 2014
  • We apply a machine learning algorithm, artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. We also evaluate the gravitational-wave data within a few seconds of the selected short gamma-ray bursts' event times using the trained networks and obtain the false alarm probability. We suggest that artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short gamma-ray bursts.

  • PDF

Adaptive Intrusion Detection System Based on SVM and Clustering (SVM과 클러스터링 기반 적응형 침입탐지 시스템)

  • Lee, Han-Sung;Im, Young-Hee;Park, Joo-Young;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.237-242
    • /
    • 2003
  • In this paper, we propose a new adaptive intrusion detection algorithm based on clustering: Kernel-ART, which is composed of the on-line clustering algorithm, ART (adaptive resonance theory), combining with mercer-kernel and concept vector. Kernel-ART is not only satisfying all desirable characteristics in the context of clustering-based IDS but also alleviating drawbacks associated with the supervised learning IDS. It is able to detect various types of intrusions in real-time by means of generating clusters incrementally.