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Abstract

In vehicular networks, diverse safety information can be shared among vehi-

cles through internet connections. In vehicle-to-internet communications,

vehicles on the road are wirelessly connected to different cloud networks,

thereby accelerating safety information exchange. Onboard sensors acquire

traffic-related information, and reliable intermediate nodes and network ser-

vices, such as navigational facilities, allow to transmit safety information to

distant target vehicles and stations. Using vehicle-to-network communications,

we minimize delays and achieve high accuracy through consistent connectivity

links. Our proposed approach uses intermediate nodes with two-hop separa-

tion to forward information. Target vehicle detection and routing of safety

information are performed using machine learning algorithms. Compared

with existing vehicle-to-internet solutions, our approach provides substantial

improvements by reducing latency, packet drop, and overhead.
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1 | INTRODUCTION

In transportation, vehicular ad hoc networks (VANETs)
offer various services to improve comfort and safety.
Hence, the automotive industry has expanded rapidly
and now offers such services. Vehicles (nodes) are wire-
lessly connected to roadside equipment, cloud centers,
digital video broadcasting units, and other vehicles in
vehicle-to-internet (V2I) communications. A variety of
resources on the roadside can improve connectivity
between vehicles. Medium access protocols with short
channel vulnerability times are used to primarily reduce
packet collisions [1]. VANETs have received considerable
attention in intelligent transportation owing to the devel-
opment of the Internet of Things and fifth-generation

(5G) communications. As a result, safety information can
be delivered to vehicles farther and more quickly than
ever before [2]. Cloud services assist source vehicles in
quickly locating destination vehicles. Nevertheless, the
low processing power of mobile nodes renders the identi-
fication of reliable targets challenging. Thus, cloud
servers, roadside units (RSUs), and smartphones can par-
ticipate in V2I communications to guarantee the distribu-
tion of information with negligible network overhead [3].

Various issues related to vehicle-to-vehicle and V2I
communications have been resolved using V2I communi-
cation methods. Cloud-based services with GPS (global
positioning system) navigational capabilities have been
used to discover credible targets. During travel, an RSU
performs an intensive search for neighboring clouds. To
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reduce overhead, two-hop message transmission is imple-
mented. By excluding non-safety events, node search in
the source vehicles can further reduce overhead. In [4],
energy-efficient cluster intradomain routing is achieved.
Based on target prediction, nonparticipating vehicles turn
into sleeping nodes to save energy.

An RSU has wired connectivity, mitigating network
link failures and establishing several node data routes.
Therefore, the data processing load on the end nodes is
reduced. The cloud is an infrastructure in which machine
learning techniques can be deployed for reliable naviga-
tion to perform target node discovery [5]. An information
dissemination scheme using a software agent approach is
introduced in [6]. The agents use real-time data and per-
form specific tasks. Data integrity is protected and main-
tained through V2I communications. Hence, the packet
delivery ratio is improved while reducing overhead.

In this study, we developed an artificial neural net-
work (ANN) based on Bayes’ rule (BR) optimization and
the Levenberg–Marquardt algorithm (LMA) to classify
safety events and process data while preserving stable
communication. The increasing use of smart technologies
has drastically enhanced the reliability of connectivity,
secure wireless transmission, and efficient processing.
However, various computational and communication
challenges persist regarding data augmentation in net-
works. The gradient-based local optimization of the LMA
is deterministic and offers a rapid average convergence
and system stability, which can benefit multistage per-
ceptron training.

1.1 | Motivation

Numerous methods for vehicular networks have improved
information sharing. However, in the future of vehicle
transportation, various activities will be possible, such as
holding conference meetings while driving, driving
without stress, or even sleeping. Thus, integrating services
from various communication technologies is required for
VANETs. Automated processes and various applications
exist for selecting these services. Suitable routing and path
prediction are required to locate a target node when
processing massive vehicular data. Thus, the end-to-end
latency should be reduced while improving the packet
delivery ratio. Existing developments have inspired us to
develop an enhanced V2I communication environment.

Our V2I network is intended to provide vehicles with
an effective and stable connection that enables a depend-
able and secure transportation system. It may help to pre-
vent accidents, perform immediate rescue operations,
improve vehicle and driver safety, and make transporta-
tion systems more secure and comfortable. Depending on

the system requirements, all the information from vehicle
sensors can be intelligently routed through a gateway
node and communicated to an RSU or broadcasted to
surrounding vehicular clouds. In addition to
dissemination of road safety information, various levels
of data processing are incorporated at different levels of
the network nodes to prevent overload.

1.2 | Contributions

We combine machine learning methods, cloud computing
power, and wireless technology to improve the perfor-
mance of V2I communications. The main contributions of
our study are summarized as follows: (1) grouping vehicles
according to their distances to form vehicle clusters,
(2) relaying sensor-activated safety and non-safety event
information using two-hop communication, and (3) discov-
ering target nodes using machine learning techniques run-
ning in the cloud and RSU. The tasks for V2I information
dissemination are described as follows:

• Vehicles are clustered based on the communication
range along the road. The vehicles monitor and detect
key events on the road, such as accidents, traffic den-
sity, land sliding, and excessive fog, using onboard
sensors.

• Dynamic clusters are created by grouping the nodes on
the road according to their communication range. The
cluster head (CH) is selected based on the distance
from the RSU and by using processing resources
among the available nodes to route traffic from the
end nodes to the RSU.

• Within a cluster, information forwarding is always per-
formed using the two-hop link lifetime-based algo-
rithm (THLLBA) with two-hop data forwarding by
selecting the links with the longest connection time.
These links provide reliable connectivity to improve
the throughput and reduce latency.

• Information is forwarded from the RSU to a nearby
vehicular cloud and then to the internet through wired
connections to enable efficient channel access for reli-
able target detection.

When safety information enters the cloud center, the
message type is identified. For example, if the safety mes-
sage refers to an accident, the target node may be a hospi-
tal or a nearby rescue station. To discover reliable targets,
machine learning techniques are used, such as the LMA.

The remainder of this paper is organized as follows.
Section 2 describes related work on techniques, difficul-
ties, shortcomings, and future developments related to
V2I safety information transmission. In Section 3, we
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detail the static and mobile agents used in our approach
and existing solutions. Section 4 describes the simulation
analysis along with the inputs and parameters. Section 5
highlights the simulation results. Finally, we draw con-
clusions in Section 6.

2 | RELATED WORK

Vehicle-to-network or V2I communication comprises
both vehicle-to-vehicle and V2I networks as well as inter-
net services. A supporting architecture is required to
extend and enhance the range of communication and
increase the number of internet services. Requested infor-
mation can be sent to vehicles that are not currently
within the roadside infrastructure range through multiple
hops [7]. Vehicle-to-network communication allows to
connect the target and source nodes using an optimal
path that improves the packet delivery ratio. This is
achieved through roadside infrastructure and internet
cloud units, which act as intermediate nodes.

Major enabling technologies in vehicle-to-network
communications involve various areas such as novel
materials, algorithms, and system designs, as discussed
in [8]. Machine learning has gained popularity in intelli-
gent transportation systems for vehicle-to-network com-
munications that deliver services under stringent
requirements. However, dedicated short-range communi-
cation has substantial limitations, such as limited cover-
age, low throughput, poor quality of service, and long
channel access latency, in crowded and high-mobility
environments [9]. A comprehensive overview of the
vehicle-to-everything ecosystem is presented in [10]. In
this ecosystem, primary security/privacy concerns, cur-
rent standardization efforts, and potential defensive mea-
sures are being addressed [11]. In addition, the taxonomy
of misbehavior detection mechanisms and state-of-the-art
vehicle-to-everything security solutions have been
analyzed.

A social vehicle-to-everything communication model
has been proposed to improve the flow of traffic in intelli-
gent transportation systems by transmitting required
information in time using ultrahigh-speed integrated cel-
lular 5G technology [12]. This model notably improves
information transmission for moving vehicles. Because
wireless communication is broadcasted, it is vulnerable
to jamming, eavesdropping, and spoofing, which may
harm an intelligent transportation system. Hence, intelli-
gent vehicle-to-everything security is devised in [13].
Multiagent driven clustering for VANETs is presented
in [14]. A route is predicted using the vehicle speed, trav-
elling direction, degree of linkage to other vehicles, and
mobility pattern.

In [15], both weighted and non-weighted static agents
are incorporated. First, during dynamic clustering, the
cluster members are chosen according to the relative
speed and direction of the vehicles. CHs are selected from
the members based on a stability measure derived
from the degree of connection, average speed, and time
required to depart the road junction. Dual-channel trans-
mission involving control and service channels is used by
the protocol to ensure service performance that is sensi-
tive to certain delays [16]. A quick overview of current
technologies, standardization, and existing technology
capabilities is presented in [17].

In [18], various problems, trends, and possible solu-
tions for V2I communication are addressed. Network
resources are assigned to vehicular nodes by considering
an inexpensive model. However, the overall system
implementation to improve efficiency is complex. The
existence of additional infrastructure enables vehicle-
to-everything services to substantially improve the
throughput, bandwidth utilization, and packet overhead.
In [19], various scenarios are examined for recent and
sophisticated autonomous driving applications. In addi-
tion, the management by fourth-generation and 5G net-
works of the latency and spectrum requirements of
various use cases is analyzed.

To prevent attacks during communication, appropri-
ate security and authentication mechanisms are
required [20]. However, authentication may compromise
user privacy by carrying location and identity informa-
tion. User privacy can be protected using cryptography,
but it is intended to be deployed in a third-party server.
Consequently, conventional security models suffer from
communication and key management overhead. To
address this problem, a secure performance-enhanced
channel-allocation security model based on the commu-
tative RSA (Rivest–Shamir–Adleman) system is proposed
in [21]. In [22], cell-based data transactions in intelligent
transportation systems are analyzed emphasizing path
setup delay and time overhead. The uniqueness of trans-
portation networks demands the deployment of specific
security methods to address problems with vehicle-
to-everything communication. For instance, blockchains
may ensure the secure exchange of information [23].

In [24], multipath routing minimizes the path recog-
nition time, end-to-end delays, and routing overhead to
decrease the complexity and increase the quality of ser-
vice. A reduced broadcast overhead for an emergency
message scheme is proposed in [25]. To overcome the
broadcast storm problem, dynamic clustering is used by
incorporating a novel CH selection mechanism. The vehi-
cles with the most stable connectivity are selected as
CHs, thereby assisting in the transmission of emergency
information with reduced packet collisions.
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In vehicular cloud networks, efficient resource man-
agement increases resource utilization and reduces costs.
Similarly, appropriate resource allocation reduces costs,
vehicle (client) waiting times, and waiting queue lengths.
A cost model can allocate resources to vehicles using the
least costly route, thereby resulting in cost savings.
In [26], a dynamic resource discovery technique for a
vehicular cloud network is introduced. A resource-
finding strategy using honeybee optimization is com-
bined with static and mobile agents in [27]. The mobile
agents collect vehicle cloud information, and the static
agents identify the resources required by the vehicles.

A vehicular cloud is a resource pool that stores, pro-
cesses, navigates, and provides network services to all
vehicles within the communication range. It enables the
timely delivery of data to achieve road safety, efficient
information exchange, and fast transmission of safety
warnings [28]. The Internet of Everything may eventually
integrate mobile devices, desktop computers, and laptops
for real-time data exchange [29]. In a V2I communication
system, vehicles can communicate easily with each other
on the road with support of the infrastructure they pass
through while traveling, cloud-based software, and a cov-
ered power grid [30]. In [31], a Bayesian game model is
proposed to find the optimal node for data transmission
in a wireless sensor network by considering energy,
bandwidth, and computational latency.

Various dissemination techniques have been analyzed
and evaluated in V2I networks, identifying the following
limitations: lack of intelligence in dissemination, inade-
quate handling of vehicle dynamics, link duration incon-
sistency, and scalability issues. Our proposed approach
addresses these limitations, and we perform a compari-
son with existing studies to evaluate the performance
improvements.

3 | PROPOSED APPROACH

We propose a multiple cluster architecture with ANN-
based safety information dissemination for V2I commu-
nication in VANETs. The proposed approach collects
safety information from onboard vehicle sensors, and the
THLLBA allows to disseminate this information. For-
warding nodes at two hops with reliable connections are
selected based on the duration of their connections.
Smart algorithms based on artificial intelligence (AI) are
used to analyze data and disseminate safety information
throughout the network with a short end-to-end delay.
The proposed approach is intended to efficiently transmit
information from a source vehicle with enhanced end-
to-end latency, travel time, flow velocity, and communi-
cation overhead.

3.1 | Network scenario

The scenario for the proposed approach to establish V2I
communication is shown in Figure 1. The clusters are
enclosed in dotted circles and comprise high-density
moving nodes (N1–N9) traveling at different speeds and
gateway nodes GN1–GN4 that perform packet routing
between the end nodes and RSUs. Information forward-
ing within the cluster is performed through dedicated
short-range vehicle-to-vehicle communication (dotted
arrows in Figure 1). A high-speed cable network connects
RSUs RSU1–RSU4 to vehicle clouds for information
transmission (solid arrows). Vehicular clouds VC1 and
VC2 collect information of distant nodes within the com-
munication range. The information includes relative
speed, location coordinates, vehicle identifier, and driver
information. The network consists of several clouds. A
vehicular cloud can access internet services to incorpo-
rate additional features, and internet access is achieved
by an infrastructure-based interface. The vehicle GPS
coordinates and information about road junctions are
sent to the cloud using an internet service, facilitating the
selection of reliable targets by the cloud.

3.2 | Node clustering

Information dissemination begins with clustering, which
includes the identification of reliable nodes to form a
cluster and CH selection. The CH announces vehicle
mobility patterns, and cluster formation is based on the
relative speed difference in a small area. All the nodes
are instructed by the CH to broadcast their speeds
according to their communication ranges. Vehicles are
considered neighbors if the distance between them is less
than R. Neighboring vehicles traveling in the same direc-
tion and lane are evaluated for clustering, whereas those
traveling in the opposite direction are discarded. Vehicles
are clustered according to the communication range
along the route. The CH is selected according to its dis-
tance from the RSU and capacity to handle traffic routing
between the end nodes and RSU.

3.3 | Safety message classification

Onboard sensors in each vehicle allow to identify events
based on measurements, and rainforest search is applied
to determine the type of event. This technique categorizes
massive data based on attribute values and class labels
through supervised learning on multiple events and by
combining several classifiers to improve performance.
The classification accuracy depends on the responses of
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multiple decision trees and subsets of training samples.
From various measurements, events are categorized as
either safe or dangerous. The safety and non-safety events
according to the sensor states and corresponding target
stations are listed in Table 1. The target nodes are identi-
fied based on the type of safety information to avoid
broadcasting safety data to all the nodes in an area. Thus,
secure and fast delivery of data is achieved with energy
efficiency.

3.4 | Functional model using agents

In AI, a software agent makes intelligent decisions based
on predictions and can accurately perform a specific task.
Software agents can perceive the environment through
sensor measurements to perform corresponding actions
using actuators. In the proposed approach, information
fetching from moving vehicles is assigned to software
agents called mobile agents. Different types of agents col-
laborate for data dissemination, as detailed below.

• Vehicle agency: The vehicle agency for the proposed
approach is illustrated in Figure 2. This agency is

implemented in the base layer of the network and
comprises two agents. The mobile agent (information
collection agent) collects traffic information from
neighboring vehicles in the communication range, and
the vehicle manager agent coordinates the activities in
the communication system. The information is
updated in a knowledge base at regular intervals or by
a trigger state.

• RSU agency: The second-level RSU agency finds
vehicular clouds in its communication range for infor-
mation forwarding. The messages are destined to the
RSU from the bottom layer using two-hop switching to
accelerate transmission. The bottom layer also discards
non-safety messages from dissemination to avoid infor-
mation flooding. Hence, unnecessary delayed data
determined from a counter (timer) are discarded from
the network to further reduce flooding. During the
scheduled time to live, data are sent across a wired
fiber connection to a vehicular cloud. The vehicle man-
ager agent oversees the RSU operations.

• Vehicular cloud agency: The network cloud holds
the information about safety and non-safety events in
a matrix that can describe any event listed in Table 1.
To identify a reliable target vehicle, the vehicular cloud

F I GURE 1 Architecture of proposed V2I network.
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TAB L E 1 Safety and non-safety events according to sensor measurements.

Crash sensor Wiper state Engine state Vehicle speed (m/s) Emergency alert Safety event Target station

ON OFF OFF 0 OFF Accident Hospital

ON ON ON 0 ON Accident Hospital

OFF ON OFF 10 OFF Land sliding Fire station

OFF OFF ON 20 OFF High traffic density Traffic station

OFF OFF OFF 0 ON Empty fuel Fuel station

OFF ON ON 30 ON Heavy rain/fog Weather station

ON ON ON 0 ON Accident Hospital

ON ON ON 0 ON Accident Hospital

OFF ON OFF 30 ON Heavy rain/fog Weather station

OFF OFF OFF 20 ON Critical event Broadcast

ON OFF OFF 0 OFF Accident Hospital

OFF OFF OFF 30 OFF High traffic density Traffic station

ON OFF OFF 0 ON Accident Hospital

OFF OFF OFF 20 OFF Land sliding Fire station

OFF OFF OFF 0 ON Empty fuel Fuel station

OFF OFF OFF 30 ON Critical event Broadcast

F I GURE 2 Vehicle agency function model.

1070 KOTI ET AL.



implements the LMA and BR optimization to correlate
targets based on the type of safety information. The
functions of the vehicular cloud agency are indicated
in Figure 2. The messages are either critical or non-
critical, and they are identified by the BR optimizer.
Fixed targets include fuel and weather stations as well
as hospitals, and they serve as destinations for vehicles.
For efficient dissemination to different targets, deter-
ministic and network coding broadcast methods are
used. This approach enables the vehicular cloud to
select an adequate target quickly and efficiently. For
instance, if an accident occurs, the information is sent
to a nearby hospital and police station, initiating res-
cue efforts and preventing unnecessary broadcasting to
irrelevant target stations. The sensor measurements
allow to identify safety events. For example, after an
accident occurs, the crash sensor is activated, the
engine turns off, and the vehicle speed is 0. An emer-
gency alert is controlled by the driver to trigger an
emergency state. Table 1 details the possible events
based on sensor measurements.

3.5 | Target node discovery and
dissemination

Table 1 is constructed according to various suggestions
and by removing redundancies. The vehicle speed is
represented by a continuous value. Several machine
learning, trust-based, and AI algorithms have been pro-
posed for node detection. Smart and AI-based Internet-
of-Things schemes are suitable for various applications
and maintaining safe communication among network
nodes. We propose an AI-based hybrid vehicular
network to process and compute massive data in a dis-
tributed method that ensures fast secure communication.
The target nodes are identified based on the type of safety
information to avoid broadcasting to all the nodes in
an area.

An AI-based ANN is a mathematical model for imple-
menting data categorization, nonlinear functions, and
regression. The proposed AI-based ANN architecture
comprises inputs from multiple embedded sensors, data
manipulation units, backend layers, and an output unit,
which identifies the target vehicle. The AI-based ANN
has o outputs, Hh backend units, and Ii inputs, and it is
described by

αrðtÞ¼
XHk

α¼1

W 2
rsFð:Þ

X
y1

IiW
1
arαsðtÞ0þb1ar; where 1≤ r ≤ 0,

ð1Þ

with Wrs and War representing the edge connectivity
values between the input, middle, and output layers. In
addition, F is the sigmoid activation function that deter-
mines a suitable target regarding processing and compu-
tation using the ANN. Weights Wrs and War determine
an appropriate scheme for optimization based on the
LMA and BR optimization. Incorporating an AI-based
scheme into an Internet-of-Things system to process or
safeguard multihoming network data can be beneficial.
In the following subsections, we explain the LMA and
BR optimization used to obtain accurate outputs.

3.6 | LMA

The LMA is a deterministic gradient-based local optimi-
zation method. While training a multistage perceptron,
the LMA provides a quick and consistent convergence
rate while ensuring system stability. The LMA defines a
trust region for finding the minimum of a function. In
the proposed approach, various types of data (safety/non-
safety) must be delivered to specific targets by identifying
them with a short end-to-end delay. Even for various
dependent and independent variables, the LMA allows to
quickly find a reliable target.

The LMA was created for a second-order derivation
training speech technique without estimating the Hessian
matrix, which is analogous to a quasi-Newton system. By
applying the sum of squares, the Hessian matrix (HM) is
approximated as follows:

HM ¼QTQ, ð2Þ

G¼QTσ, ð3Þ

where Q is a Jacobian matrix that holds the sensor
measurements according to biases and weights, thus
representing an error vector in an ANN. This Jacobian
matrix can be assessed by applying BR optimization,
with the predictions from the hidden layers being
represented as

αqðtÞ¼F 0 IiðtÞð Þ
X
q
σrqðtÞW 2

rqðt�1Þ, ð4Þ

where q is the number of safety event neurons over r hid-
den layer neurons (safety/non-safety events). Further-
more, the LMA uses the following Hessian matrix
approximation:

deltaðwÞ ¼� QTQþμI
� ��1

QTσ, ð5Þ
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where w indicates the governing parameters and indi-
cates differential weights. If μ is zero, the Newton method
is obtained. Otherwise, for large μ, a gradient descent
with short steps is obtained. Near the minimum error,
the Newton method is substantially more accurate and
faster. Hence, we decrease μ after each successful proce-
dure and increase it only when the step improves the per-
formance function.

3.7 | BR optimization

To improve the processed data, we combine the LMA
with BR optimization to determine the targets for infor-
mation dissemination. BR optimization is described as

PðxjIÞ¼ PðIjxÞ
PðIÞ : ð6Þ

The prior probability of x before obtaining the pro-
cessed information is represented by Pðx=IÞ, whereas
Pðx=IÞ is the likelihood of locating the probability of
information I. The posterior probability of x given I is
represented by a BR. The distribution across all possible
values of x is also provided by the BR. This process is
used to generate the probability distribution across
weights w for an ANN when the training data are repre-
sented as PðwjIÞ.

PðwjIÞ¼ PðIjwÞPðwÞ
PðIÞ , ð7Þ

PðwjIÞ¼ PðIjwÞ
δPðIjwÞPðwÞdw : ð8Þ

In the formulation of the BR, the learning of weights
alters beliefs about the past, PðwÞ, and posterior, Pðw=IÞ,
weights. When data are gathered and processed from
multiple input changes, the learning rates also change.
Moreover, the inputs from malicious nodes can be ana-
lyzed using the network energy usage and distribution
ratio. In fact, malicious nodes always process false or con-
tradictory information, generating many mistakes.

The inputs are subjected to the LMA to determine the
convergence rate and weights (trust) of each node input
while recording errors. The gradient and Jacobian matrix
are evaluated for every node, including the hidden nodes.
The regulating parameters represented in (4) and (5) are
used to handle mistakes when analyzing the weights
from various input nodes.

The Newton method is also used to obtain rapid
and accurate results while minimizing errors. The BR is
applied over the LMA to optimize the processed or
recorded information from the inputs for efficient pro-
cessing and weighting. This is performed after assessing
or calculating the weight of each node. The input is dis-
tributed based on probabilities to the different nodes to
compute (refer to (6)) and process the efficient distribu-
tion of information while maintaining system stability.
Both (7) and (8) describe the optimal stationary and
mobile targets used to forecast the dissemination
strategy.

3.8 | Operational sequence

The operational sequence of the proposed approach is as
follows. (1) Based on the communication range along the
route, vehicle clustering is performed. (2) The CH is
selected based on the distance from the RSU and the
node capacity to handle traffic routing between end
nodes and the RSU. (3) A two-hop node link lifetime
approach is used to relay the information inside a cluster,
where switching occurs between a few nodes in the clus-
ter to avoid redundancy. (4) Connections with the longest
connection times are chosen for information
dissemination.

Data are sent from the RSU to a nearby vehicular
cloud and internet devices through a wired connection,
which ensures accurate target recognition. Two ANN
approaches based on the LMA and BR optimization
improve the accuracy of dissemination. The operational
sequence is performed in synchronization with the
vehicle, RSU agency, and cloud agency modules. We
evaluated the latency of the proposed approach based
on the cumulative delay associated with the three
modules.

3.9 | Algorithms

Algorithm 1 details the proposed procedure for cluster
formation. The inputs are all the vehicle distances and
movement directions. Initially, CH advertisement CHA is
hosted by a node at random, and all other nodes in the
communication range receive the CHA packet.

The cluster members respond by cluster membership
request CMR from the CH, which determines the dis-
tance and direction during selection of cluster members
and acknowledges the node for registration using a con-
firm packet.
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Algorithm 2 shows the procedure for disseminating
an emergency message. The RSU receives sensor data
from the end nodes and identifies critical or non-critical
information accordingly. If the message type is emer-
gency, information broadcasting is performed based on
the target node identified using BR optimization. Other-
wise, broadcasting is suspended, and the emergency mes-
sage is only transmitted to certain target stations to
reduce dissemination overhead and accelerate
transmission.

The LMA delivers a rapid and constant convergence
rate that ensures system stability, being suitable for train-
ing multistage perceptron models. BR optimization
assists in the selection of reliable targets for dissemina-
tion until Td reaches zero.

4 | SIMULATION

The proposed agent-based aggregation model was simu-
lated in Python as a discrete event system. The inputs for
the simulation and performance measures are detailed in
this section. The simulation was performed at various time
intervals to cover overall topological changes. After the
initial 180 s of registration, the agents collected the data.
To obtain stable outcomes, the simulation was run five
times. The network, traffic, mobility, and channel models
as well as the optimization algorithms are described in this
section. A network range length of 20 km was considered
with RSU interleaving of 5 km and placement of a vehicu-
lar cloud at 5 km per RSU. The packet header included
additional data to reflect the number of targets, channel
contention, and route congestion.

• Packet delivery ratio: This ratio (in percentages) is
defined as the ratio of the total number of packets sent
by the source to the total number of packets received
at the destination during any communication between
the two parties. This ratio reflects the network
performance.

• Link lifetime: The link lifetime (in seconds) is
defined with respect to consistency or availability of an
active link for information exchange. In wireless com-
munication, stable connection is difficult to sustain
over a long time. Hence, this measure reflects the con-
nection stability in a network.

• End-to-end delay: The time elapsed to deliver a com-
plete message to a distant target vehicle is known as
the transmission delay (in milliseconds). It depends on
the vehicle density, dynamic topology, and number of
intermediate nodes.

• Dissemination efficiency: It measures the efficiency
of transmission considering the end-to-end delay and
latency. It is expressed as

DE¼ Propagation distance�Success ratio
Propagation time�Redundancy rate

: ð9Þ

• Cluster stability: It is defined as the duration
(in seconds) of the connection between the CH and
cluster members. It indicates the connectivity
consistency.

• RSU response time: It is the time difference
(in seconds) between packet arrival (uplink) and
packet dispatch (downlink) at an RSU. This measure is
the crucial part of the response time that affects the
end-to-end delay.
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• Routing overhead: The overhead is the additional
time (in milliseconds) required for packet transfer. It
includes the delays of handshaking, node registration,
and storing and forwarding.

• Network redundancy rate: This rate
(in percentages) is defined as the availability of multi-
ple pathways between source and destination vehicles.
Multiple links provide flexibility for maintaining the
connection under node route failures.

The abovementioned performance measures were
obtained to confirm the considerable improvements of
our approach through simulations. These improvements
were due to the additional cloud network facility and
THLLBA, which were simulated in Python.

5 | RESULTS AND DISCUSSION

To evaluate the performance of the proposed approach,
we obtained various performance measures (Section 4)
according to the vehicle (node) density and mobility
level. To verify the effectiveness of the proposed
approach, we compared its results with those of the
position-based emergency message dissemination for
internet-of-vehicles (PEMIV) scheme.

At various vehicle densities, the packet delivery ratio,
energy consumption, routing overhead, cluster formation
time, and average end-to-end latency of the dissemina-
tion strategies were examined (from 10 to 100 vehicles).

• The packet delivery ratio according to the vehicle den-
sity is shown in Figure 3 for different mobility levels.
The high-quality links and two-hop forwarding of the

proposed approach lead to higher performance
compared with the PEMIV scheme. However, at low
vehicle density and increased mobility level, the per-
formance of the proposed approach drops by 8%.

• The link lifetime indicates the availability of a commu-
nication channel for transmission, as shown in
Figure 4. The long connectivity duration and two-hop
forwarding of the THLLBA improves the link lifetime
by 20% when compared with the PEMIV scheme.

• Figure 5 shows the effects of vehicle density on the
end-to-end latency. With more mobility and lower
vehicle density, the average latency increases. More
vehicles facilitate finding dependable nodes along the
route, and the cellular infrastructure network in
the RSUs and cloud can swiftly analyze safety data
using the LMA and BR optimization. The total delay
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F I GURE 5 End-to-end delay according to vehicle density.

1074 KOTI ET AL.



includes forwarding and processing times. At greater
mobility levels, the proposed approach consistently has
the longest latency, possibly because route finding
takes a long time owing to inconsistent network con-
nections. At increasing vehicle density, the proposed
approach offers a shorter end-to-end delay than the
PEMIV scheme.

• Figure 6 shows the dissemination efficiency according
to the vehicle density. Given the steady connectivity
for a long period and possible prevention of collisions,
a gain in efficiency is achieved for longer link lifetimes.
Additionally, two-hop forwarding decreases the quan-
tity of intermediate vehicle nodes, mitigating the

processing of redundant data. The efficiency increases
by all these factors.

• Cluster stability indicates how often the cluster config-
uration changes when the scenario changes. The dura-
tion of a CH using the proposed approach according to
the vehicle density and mobility level is shown in
Figure 7. As the vehicle mobility increases, the CH sta-
bility decreases because the network topology changes
more rapidly. Hence, the CHs are unable to remain
stable with the same cluster members over long
periods. The THLLBA uses two-hop clustering, in
which the CH may reach all nodes two hops away, and
the CH is chosen according to the lowest velocity.
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Hence, it eventually maintains a lasting connection
with the cluster members.

• Figure 8 shows the relation between the RSU response
time and end-to-end communication distance between
the source and destination. As distant communication
involves more vehicular clouds, the RSU introduces an
extra processing delay for data forwarding. Compared
with the PEMIV scheme, the response time in the pro-
posed approach is notably reduced by approximately
3 s, reducing the end-to-end delay.

• Figure 9 shows the relationship between the routing
overhead and vehicle density at various mobility levels.
The two-hop node selection and cluster stability sub-
stantially reduce the overhead, but it increases slightly
with higher vehicle density, which slowly creates

congestion. However, for vehicle densities of up to 40–
60, the overhead remains constant, which affects the
overall dissemination efficiency.

• Figure 10 shows the network redundancy rate according
to vehicle density. This rate increases between 20 and
40 vehicles per kilometer but falls at higher densities
because the THLLBA selects nodes with a two-hop
distance. Thus, few nodes contribute to connection
establishment, mitigating network redundancy by
approximately 17% compared with the PEMIV scheme.

A summary of the comparison results is presented in
Table 2. The PEMIV scheme and proposed approach
values were obtained for vehicle mobility levels of 10–
30 m/s.
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TAB L E 2 Evaluation results of proposed approach and PEMIV scheme.

No. Performance parameter PEMIV scheme (min–max) Proposed approach (min–max) Improvement

1 Packet delivery ratio (%) 32.3–59.6 57.2–79.1 20

2 Link lifetime (s) 45.2–63.3 58.1–76.4 13

3 Latency (s) 7.0–8.6 4.9–6.2 2.4

4 Dissemination efficiency (%) 20–60 45–70 10

5 Cluster stability (s) 12–13 22–24 11

6 RSU response time (s) 5.9–8.1 2.9–3.5 4.6

7 Routing overhead (ms) 62.2–76.4 45.1–45.8 31

8 Network redundancy rate (%) 59–72 32–42 30
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6 | CONCLUSION

We propose an ANN-based intelligent data dissemination
technique for efficiently forwarding safety information to
a distant target vehicle in a VANET. Multiple agents are
used to collect and coordinate a large amount of informa-
tion generated in a V2I network. Internet services used in
the proposed approach provide additional functionalities
for fast data delivery. Vehicular clouds provide informa-
tion at defined ranges, thus increasing the efficiency of
data dissemination. The proposed approach may be more
adaptable and easily used in real-time applications than
similar solutions. In addition, it is more efficient than the
PEMIV scheme in terms of data collection time, band-
width utilization, and end-to-end delay. The outcomes of
the proposed approach in terms of performance were as
follows: packet delivery ratio increased by 15%, connec-
tion lifetime increased by 13%, end-to-end latency
increased by 30%, distribution efficiency increased by
19%, and RSU response time increased by 20%.
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