• 제목/요약/키워드: Machine intelligence

검색결과 1,178건 처리시간 0.035초

기계학습을 활용한 상품자산 투자모델에 관한 연구 (A Study on Commodity Asset Investment Model Based on Machine Learning Technique)

  • 송진호;최흥식;김선웅
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.127-146
    • /
    • 2017
  • 상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.

머신러닝 혁신 특성과 니치의 탄생: 한국 스타트업 사례를 중심으로 (Innovation Patterns of Machine Learning and a Birth of Niche: Focusing on Startup Cases in the Republic of Korea)

  • 강송희;진성민;백필호
    • 한국전자거래학회지
    • /
    • 제26권3호
    • /
    • pp.1-20
    • /
    • 2021
  • 코로나19 대유행으로 세계경제포럼에서 그레이트 리셋이 논의되면서 제4차산업혁명의 동력인 인공지능도 조명을 받고 있다. 그러나 인공지능 분야의 기업 연구는 아직도 희소하다. 2000년 이후 관련 연구는 기존 기업에 어떻게 인공지능을 적용하여 가치를 창출할 것인가에 초점이 맞춰져 있으며, 신생기업들이 어떻게 기회를 포착하고 기존 사업자들 사이에 진입하여 새로운 가치를 창출하는지에 대한 연구는 거의 찾아볼 수 없다. 이에 본 연구는 소프트웨어의 세부 분야인 인공지능 기반 신생기업들이 기존 소프트웨어 산업과 어떻게 다른 혁신패턴을 갖는가라는 연구 질문을 가지고 다층적 접근론의 종합적 틀을 활용하여 신생 기업들의 사례를 분석하였다. 대상 기업들은 창업 7년 내 의료, 금융, 마케팅/광고, 유통, 제조 분야에서 의도적으로 표집된 머신러닝 모델링 전문 신생 기업들로 벤처기업 인증을 받은 고성장 기업들이다. 분석 결과 기존 소프트웨어 기업들은 전사적 통합 관점의 프로세스 혁신을 이루어냈다면, 이들만의 혁신 패턴은 기존의 프로세스들을 잘게 해체하여 자동화나 가치창출이 어려웠던 단위 프로세스들을 식별해 내고 데이터 기반으로 자동화, 최적화하여 새로운 가치를 제공하고 있다는 것이다. 이 연구의 기여는 통합적인 다층적 접근론의 틀의 유효성을 검증하면서 인공지능 기반 신생 기업들의 탄생과 그들의 혁신 패턴을 제시했다는 데에 있다. 한편 기업 실무적, 정부 정책적 함의를 정리하면, 데이터를 기반으로 혁신을 이끌어내기 때문에 신생 기업일지라도 데이터 관련 규제 등에 대한 제도 대응 역량이 강조되며, 정부는 관련 제도의 불확실성을 제거하고 구체화하여 예측가능하고 유연한 사업 환경을 마련할 필요가 있다.

인공지능의 역사, 분류 그리고 발전 방향에 관한 연구 (A Study on the History, Classification and Development Direction of Artificial Intelligence)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.307-312
    • /
    • 2021
  • 인공지능은 오랜 역사가 있으며, 이미지 인식이나 자동번역 분야를 포함한 여러 분야에서 활용되고 있다. 그래서 처음 인공지능을 접하는 경우에 많은 용어와 개념, 기술 때문에 연구의 방향 설정이나 수행에 어려움을 겪는 경우가 많다. 이번 연구는 이러한 어려움을 겪는 연구자들에게 도움이 될 수 있도록 인공지능에 관련된 중요 개념을 정리하고, 지난 60년의 발전 과정을 요약한다. 이를 통하여 방대한 인공지능 기술 활용의 기초를 확립하고 올바른 연구의 방향성을 수립할 수 있다.

Artificial Neural Network: Understanding the Basic Concepts without Mathematics

  • Han, Su-Hyun;Kim, Ko Woon;Kim, SangYun;Youn, Young Chul
    • 대한치매학회지
    • /
    • 제17권3호
    • /
    • pp.83-89
    • /
    • 2018
  • Machine learning is where a machine (i.e., computer) determines for itself how input data is processed and predicts outcomes when provided with new data. An artificial neural network is a machine learning algorithm based on the concept of a human neuron. The purpose of this review is to explain the fundamental concepts of artificial neural networks.

인공지능 기반의 TensorFlow 그래픽 사용자 인터페이스 개발에 관한 연구 (Study on Development of Graphic User Interface for TensorFlow Based on Artificial Intelligence)

  • 송상근;강성홍;최연희;심은경;이정욱;박종호;정영인;최병관
    • 디지털융복합연구
    • /
    • 제16권5호
    • /
    • pp.221-229
    • /
    • 2018
  • 기계 학습 및 인공지능은 제 4차 산업혁명의 핵심 기술이다. 하지만 프로그래밍 능력을 요구하는 기계 학습 플랫폼의 특성 상 일반 사용자들의 접근이 힘들기 때문에 인공지능이나 기계학습의 대중화는 제한을 받고 있다. 본 연구에서는 그래픽 사용자 인터페이스(Graphic User Interface, GUI)를 도입하여 이러한 한계를 극복하고 인공지능 활용에 대한 일반인의 접근성을 향상시키고자 하였다. 기본 기계 학습 플랫폼으로는 Tensorflow를 채택하였고 GUI는 마이크로 소프트 사의 .Net 환경을 활용하여 작성하였다. 새로운 사용자 인터페이스를 이용하면 일반 사용자도 파이썬 프로그래밍에 대한 부담없이 직관적으로 데이터를 관리하고, 알고리즘을 적용하고, 기계 학습을 실행할 수 있다. 우리는 이 개발이 다양한 분야에서의 인공지능 개발에 기초가 되는 자료로 활용되었으면 한다.

다중 스케일 어텐션과 심층 앙상블 기반 동물 피부 병변 분류 기법 (Multi-scale Attention and Deep Ensemble-Based Animal Skin Lesions Classification)

  • 곽민호;김경태;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1212-1223
    • /
    • 2022
  • Skin lesions are common diseases that range from skin rashes to skin cancer, which can lead to death. Note that early diagnosis of skin diseases can be important because early diagnosis of skin diseases considerably can reduce the course of treatment and the harmful effect of the disease. Recently, the development of computer-aided diagnosis (CAD) systems based on artificial intelligence has been actively made for the early diagnosis of skin diseases. In a typical CAD system, the accurate classification of skin lesion types is of great importance for improving the diagnosis performance. Motivated by this, we propose a novel deep ensemble classification with multi-scale attention networks. The proposed deep ensemble networks are jointly trained using a single loss function in an end-to-end manner. In addition, the proposed deep ensemble network is equipped with a multi-scale attention mechanism and segmentation information of the original skin input image, which improves the classification performance. To demonstrate our method, the publicly available human skin disease dataset (HAM 10000) and the private animal skin lesion dataset were used for the evaluation. Experiment results showed that the proposed methods can achieve 97.8% and 81% accuracy on each HAM10000 and animal skin lesion dataset. This research work would be useful for developing a more reliable CAD system which helps doctors early diagnose skin diseases.

Precision Agriculture using Internet of Thing with Artificial Intelligence: A Systematic Literature Review

  • Noureen Fatima;Kainat Fareed Memon;Zahid Hussain Khand;Sana Gul;Manisha Kumari;Ghulam Mujtaba Sheikh
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.155-164
    • /
    • 2023
  • Machine learning with its high precision algorithms, Precision agriculture (PA) is a new emerging concept nowadays. Many researchers have worked on the quality and quantity of PA by using sensors, networking, machine learning (ML) techniques, and big data. However, there has been no attempt to work on trends of artificial intelligence (AI) techniques, dataset and crop type on precision agriculture using internet of things (IoT). This research aims to systematically analyze the domains of AI techniques and datasets that have been used in IoT based prediction in the area of PA. A systematic literature review is performed on AI based techniques and datasets for crop management, weather, irrigation, plant, soil and pest prediction. We took the papers on precision agriculture published in the last six years (2013-2019). We considered 42 primary studies related to the research objectives. After critical analysis of the studies, we found that crop management; soil and temperature areas of PA have been commonly used with the help of IoT devices and AI techniques. Moreover, different artificial intelligence techniques like ANN, CNN, SVM, Decision Tree, RF, etc. have been utilized in different fields of Precision agriculture. Image processing with supervised and unsupervised learning practice for prediction and monitoring the PA are also used. In addition, most of the studies are forfaiting sensory dataset to measure different properties of soil, weather, irrigation and crop. To this end, at the end, we provide future directions for researchers and guidelines for practitioners based on the findings of this review.

구성적 인공지능 (Constructive Artificial Intelligence)

  • 박충식
    • 인지과학
    • /
    • 제15권4호
    • /
    • pp.61-66
    • /
    • 2004
  • 서양철학의 근간을 이루는 데카르트의 이성주의적 인간이해의 반성으로부터 등장한 구성주의는 지능을 포함한 인간이해의 새로운 대안이 될 수 있을 것으로 생각한다. 구성주의는 진화생물학, 진화심리학, 뇌과학, 시스템이론, 복잡계 이론의 성과뿐만 아니라 나아가 인문사회학의 경향과도 설명을 공유할 수 있는 많은 부분이 있다. 또한 인공지능 분야에서도 구성주의적 방법이라고 할 수 있는 연구가 진행되고 있다. 이 글에서는 구성주의적 관점에서 인공지능에서 다루는 지능에 대한 이해의 지평을 넓히고 이를 기반으로 한 방법론에 대한 검토와 그러한 경향에 있는 일부 인공지능 기술을 살펴보고자 한다. 이러한 논의를 통하여 여러 가지 관점의 마음에 대한 이론과 기술을 상호보완적으로 이해하고 다소 등한히 되고 있는 인공지능의 보편지능(general intelligence)의 토대로 삼고자 한다.

  • PDF

Experience Way of Artificial Intelligence PLAY Educational Model for Elementary School Students

  • Lee, Kibbm;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.232-237
    • /
    • 2020
  • Given the recent pace of development and expansion of Artificial Intelligence (AI) technology, the influence and ripple effects of AI technology on the whole of our lives will be very large and spread rapidly. The National Artificial Intelligence R&D Strategy, published in 2019, emphasizes the importance of artificial intelligence education for K-12 students. It also mentions STEM education, AI convergence curriculum, and budget for supporting the development of teaching materials and tools. However, it is necessary to create a new type of curriculum at a time when artificial intelligence curriculum has never existed before. With many attempts and discussions going very fast in all countries on almost the same starting line. Also, there is no suitable professor for K-12 students, and it is difficult to make K-12 students understand the concept of AI. In particular, it is difficult to teach elementary school students through professional programming in AI education. It is also difficult to learn tools that can teach AI concepts. In this paper, we propose an educational model for elementary school students to improve their understanding of AI through play or experience. This an experiential education model that combineds exploratory learning and discovery learning using multi-intelligence and the PLAY teaching-learning model to undertand the importance of data training or data required for AI education. This educational model is designed to learn how a computer that knows only binary numbers through UA recognizes images. Through code.org, students were trained to learn AI robots and configured to understand data bias like play. In addition, by learning images directly on a computer through TeachableMachine, a tool capable of supervised learning, to understand the concept of dataset, learning process, and accuracy, and proposed the process of AI inference.