• Title/Summary/Keyword: Machine classification

Search Result 2,100, Processing Time 0.026 seconds

An Empirical Analysis of Boosing of Neural Networks for Bankruptcy Prediction (부스팅 인공신경망학습의 기업부실예측 성과비교)

  • Kim, Myoung-Jong;Kang, Dae-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • Ensemble is one of widely used methods for improving the performance of classification and prediction models. Two popular ensemble methods, Bagging and Boosting, have been applied with great success to various machine learning problems using mostly decision trees as base classifiers. This paper performs an empirical comparison of Boosted neural networks and traditional neural networks on bankruptcy prediction tasks. Experimental results on Korean firms indicated that the boosted neural networks showed the improved performance over traditional neural networks.

A Study on the Detection of Chatter Vibration using Cutting Force Measurement (절삭력을 이용한 채터의 감지에 관한 연구)

  • 윤재웅
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.150-159
    • /
    • 2000
  • In-process diagnosis of the cutting state is essential for the automation of manufacturing systems. Especially when the cutting process becomes unstable it induces self-exited vibrations a frequent case of poor tool life rough surface finish damage to the workpiece and the machine tool itself and excessive down time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time monitoring and controlling chatter. This paper describes the detection method of chatter vibration using cutting force in turning process. In order to detect a chatter vibra-tion the dynamic fluctuation of radial force is analyzed since this components is sensitive to the chatter. The envelope sig-nal of radial force has been calculated by the use of FIR Hilbert transformer and it was useful to classify the chatter signal from the dynamically unstable circumstances. It was found that the mode and the mode width were closely correlated with the chatter amplitude was well. Finally back propagation(BP) neural network have been applied to the pattern recognition for the classification of chatter signal in various cutting conditions. The validity of this systed was confirmed by the experiments under the various cutting conditions.

  • PDF

A study on evaluation method of NIDS datasets in closed military network (군 폐쇄망 환경에서의 모의 네트워크 데이터 셋 평가 방법 연구)

  • Park, Yong-bin;Shin, Sung-uk;Lee, In-sup
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.121-130
    • /
    • 2020
  • This paper suggests evaluating the military closed network data as an image which is generated by Generative Adversarial Network (GAN), applying an image evaluation method such as the InceptionV3 model-based Inception Score (IS) and Frechet Inception Distance (FID). We employed the famous image classification models instead of the InceptionV3, added layers to those models, and converted the network data to an image in diverse ways. Experimental results show that the Densenet121 model with one added Dense Layer achieves the best performance in data converted using the arctangent algorithm and 8 * 8 size of the image.

A study on the outlier data estimation method for anomaly detection of photovoltaic system (태양광 발전 이상감지를 위한 아웃라이어 추정 방법에 대한 연구)

  • Seo, Jong Kwan;Lee, Tae Il;Lee, Whee Sung;Park, Jeom Bae
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.403-408
    • /
    • 2020
  • Photovoltaic (PV) has both intermittent and uncertainty in nature, so it is difficult to accurately predict. Thus anomaly detection technology is important to diagnose real time PV generation. This paper identifies a correlation between various parameters and classifies the PV data applying k-nearest neighbor and dynamic time warpping. Results for the two classifications showed that an outlier detection by a fault of some facilities, and a temporary power loss by partial shading and overall shading occurring during the short period. Based on 100kW plant data, machine learning analysis and test results verified actual outliers and candidates of outlier.

Development of Japanese to Korean Machine Translation System ATOM Using Personal Computer II - Syntactic/Semantic Analysis and Generation Process - (PC를 이용한 일$\cdot$한 번역 시스템 ATOM의 개발에 관한 연구 ( II ) - 구문해석과 생성과 정을 중심으로 -)

  • Kim, Young-Sum;Kim, Han-Woo;Choi, Byung-Uk
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1193-1201
    • /
    • 1988
  • In this paper, we describe the syntactic and semantic parsing methods which use the case frames. The case structures based on obligatory cases of verbs. And, we use a small set of partial-garammar rules based on simple sentence to represent such case structures. Also, we enhance the efficiency by constructing independent procedure for particle classification and ambiguity resolution of major particle considering the importance of Japanese particle process in the generation. And we construct the generation table considering the combination possibility between the verbs and auxiliary verbs for processing the termination phrase. Therefore we can generate more natural translated sentence according to unique decision with information of syntactic analysis and simplify the generating process.

  • PDF

Damage Detection of Railroad Tracks Using Piezoelectric Sensors (압전센서를 이용하는 철로에서의 손상 검색 기술)

  • Yun Chung-Bang;Park Seung-Hee;Inman Daniel J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.240-247
    • /
    • 2006
  • Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SYM) classifier is discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of the railroad track (one is a hole damage of 0.5cm in diameter at web section and the other is a transverse cut damage of 7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients for $A_0$ mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing system, a two-step SYM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were successfully established by the two-step SYM classifier: Damage detection was accomplished by the first step-SYM, and damage classification was also carried out by the second step-SYM. Finally, the applicability of the proposed two-step SYM classifier has been verified by thirty test patterns.

  • PDF

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

Anomaly Classification of Railway Point Machine Using Sound Information and DNN (소리정보와 DNN을 이용한 선로전환기의 비정상 상황 분류)

  • Noh, Byeongjoon;Lee, Jonguk;Park, Daihee;Chung, Yonghwa;Kim, Heeyoung;Yoon, SukHan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.611-614
    • /
    • 2016
  • 최근 철도 산업의 비중이 증가함에 따라 열차의 안정적인 주행이 그 어느 때보다 중요한 이슈로 부각되고있다. 특히, 열차의 진로 변경을 위한 핵심 요소인 선로전환기의 결함은 열차의 사고와 직결되는 장비 중 하나로써, 그 이상 여부를 사전에 인지하여 선로전환기의 안정성을 확보하기 위한 유지보수의 지능화 시스템이 필요하다. 본 논문에서는 선로전환기의 작동 시 발생하는 소리정보를 활용하여 선로전환기의 비정상 상황을 분류하는 시스템을 제안한다. 제안하는 시스템은 먼저, 선로전환기의 상황별 소리를 수집하고, 다양한 소리정보를 추출하여 특징 벡터를 생성한다. 다음으로, 딥러닝 모델 중 하나인 DNN(Deep Neural Network)을 이용하여 선로전환기의 비정상 상황을 분류한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 기반으로 DNN의 파라미터에 따른 다양한 실험을 수행한 결과, 약 93.10%의 정확도를 갖는 안정적인 DNN 모델을 설계하였다.

Video Based Face Spoofing Detection Using Fourier Transform and Dense-SIFT (푸리에 변환과 Dense-SIFT를 이용한 비디오 기반 Face Spoofing 검출)

  • Han, Hotaek;Park, Unsang
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.483-486
    • /
    • 2015
  • Security systems that use face recognition are vulnerable to spoofing attacks where unauthorized individuals use a photo or video of authorized users. In this work, we propose a method to detect a face spoofing attack with a video of an authorized person. The proposed method uses three sequential frames in the video to extract features by using Fourier Transform and Dense-SIFT filter. Then, classification is completed with a Support Vector Machine (SVM). Experimental results with a database of 200 valid and 200 spoof video clips showed 99% detection accuracy. The proposed method uses simplified features that require fewer memory and computational overhead while showing a high spoofing detection accuracy.

A Study on the Construction of Stable Clustering by Minimizing the Order Bias (순서 바이어스 최소화에 의한 안정적 클러스터링 구축에 관한 연구)

  • Lee, Gye-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1571-1580
    • /
    • 1999
  • When a hierarchical structure is derived from data set for data mining and machine learning, using a conceptual clustering algorithm, one of the unsupervised learning paradigms, it is not unusual to have a different set of outcomes with respect to the order of processing data objects. To overcome this problem, the first classification process is proceeded to construct an initial partition. The partition is expected to imply the possible range in the number of final classes. We apply center sorting to the data objects in the classes of the partition for new data ordering and build a new partition using ITERATE clustering procedure. We developed an algorithm, REIT that leads to the final partition with stable and best partition score. A number of experiments were performed to show the minimization of order bias effects using the algorithm.

  • PDF