• Title/Summary/Keyword: Machine Utilization

Search Result 405, Processing Time 0.03 seconds

Anomaly Detection Model Based on Semi-Supervised Learning Using LIME: Focusing on Semiconductor Process (LIME을 활용한 준지도 학습 기반 이상 탐지 모델: 반도체 공정을 중심으로)

  • Kang-Min An;Ju-Eun Shin;Dong Hyun Baek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.86-98
    • /
    • 2022
  • Recently, many studies have been conducted to improve quality by applying machine learning models to semiconductor manufacturing process data. However, in the semiconductor manufacturing process, the ratio of good products is much higher than that of defective products, so the problem of data imbalance is serious in terms of machine learning. In addition, since the number of features of data used in machine learning is very large, it is very important to perform machine learning by extracting only important features from among them to increase accuracy and utilization. This study proposes an anomaly detection methodology that can learn excellently despite data imbalance and high-dimensional characteristics of semiconductor process data. The anomaly detection methodology applies the LIME algorithm after applying the SMOTE method and the RFECV method. The proposed methodology analyzes the classification result of the anomaly classification model, detects the cause of the anomaly, and derives a semiconductor process requiring action. The proposed methodology confirmed applicability and feasibility through application of cases.

Identification of Pb-Zn ore under the condition of low count rate detection of slim hole based on PGNAA technology

  • Haolong Huang;Pingkun Cai;Wenbao Jia;Yan Zhang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1708-1717
    • /
    • 2023
  • The grade analysis of lead-zinc ore is the basis for the optimal development and utilization of deposits. In this study, a method combining Prompt Gamma Neutron Activation Analysis (PGNAA) technology and machine learning is proposed for lead-zinc mine borehole logging, which can identify lead-zinc ores of different grades and gangue in the formation, providing real-time grade information qualitatively and semi-quantitatively. Firstly, Monte Carlo simulation is used to obtain a gamma-ray spectrum data set for training and testing machine learning classification algorithms. These spectra are broadened, normalized and separated into inelastic scattering and capture spectra, and then used to fit different classifier models. When the comprehensive grade boundary of high- and low-grade ores is set to 5%, the evaluation metrics calculated by the 5-fold cross-validation show that the SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naive Bayes) and RF (Random Forest) models can effectively distinguish lead-zinc ore from gangue. At the same time, the GNB model has achieved the optimal accuracy of 91.45% when identifying high- and low-grade ores, and the F1 score for both types of ores is greater than 0.9.

A Study on Total Production Time Prediction Using Machine Learning Techniques (머신러닝 기법을 이용한 총생산시간 예측 연구)

  • Eun-Jae Nam;Kwang-Soo Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.159-165
    • /
    • 2023
  • The entire industry is increasing the use of big data analysis using artificial intelligence technology due to the Fourth Industrial Revolution. The value of big data is increasing, and the same is true of the production technology. However, small and medium -sized manufacturers with small size are difficult to use for work due to lack of data management ability, and it is difficult to enter smart factories. Therefore, to help small and medium -sized manufacturing companies use big data, we will predict the gross production time through machine learning. In previous studies, machine learning was conducted as a time and quantity factor for production, and the excellence of the ExtraTree Algorithm was confirmed by predicting gross product time. In this study, the worker's proficiency factors were added to the time and quantity factors necessary for production, and the prediction rate of LightGBM Algorithm knowing was the highest. The results of the study will help to enhance the company's competitiveness and enhance the competitiveness of the company by identifying the possibility of data utilization of the MES system and supporting systematic production schedule management.

Adaptive VM Allocation and Migration Approach using Fuzzy Classification and Dynamic Threshold (퍼지 분류 및 동적 임계 값을 사용한 적응형 VM 할당 및 마이그레이션 방식)

  • Mateo, John Cristopher A.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.51-59
    • /
    • 2017
  • With the growth of Cloud computing, it is important to consider resource management techniques to minimize the overall costs of management. In cloud environments, each host's utilization and virtual machine's request based on user preferences are dynamic in nature. To solve this problem, efficient allocation method of virtual machines to hosts where the classification of virtual machines and hosts is undetermined should be studied. In reducing the number of active hosts to reduce energy consumption, thresholds can be implemented to migrate VMs to other hosts. By using Fuzzy logic in classifying resource requests of virtual machines and resource utilization of hosts, we proposed an adaptive VM allocation and migration approach. The allocation strategy classifies the VMs according to their resource request, then assigns it to the host with the lowest resource utilization. In migrating VMs from overutilized hosts, the resource utilization of each host was used to create an upper threshold. In selecting candidate VMs for migration, virtual machines that contributed to the high resource utilization in the host were chosen to be migrated. We evaluated our work through simulations and results show that our approach was significantly better compared to other VM allocation and Migration strategies.

Analysis of the Effect of the AI Utilization Competency Enhancement Education Program on AI Understanding, AI Efficacy, and AI Utilization Perception Improvement among Pre-service Secondary Science Teachers (AI 활용 역량 강화 교육 프로그램이 중등 과학 예비교사들의 AI 이해, AI 효능감 및 AI 활용에 대한 인식 개선에 미친 효과 분석)

  • Jihyun Yoon;So-Rim Her;Seong-Joo Kang
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • In this study, in order to strengthen the AI utilization competency of pre-service secondary science teachers, a project activity in which pre-service teachers directly create an 'AI-based molecular structure customized learning support tool' by using Google's teachable machine was developed and applied. To this end, the program developed for 26 third-grade pre-service teachers enrolled in the Department of Chemistry Education at H University in Chungcheongbuk-do was applied for 14 sessions during extracurricular activities. Then, the perceptions of 'understanding how AI works', 'efficacy of using AI in science classes', and 'plans to utilize AI in science classes' were investigated. As a result of the study, it was found that the program developed in this study was effective in helping pre-service teachers understand the operating principle of AI technology for machine learning at a basic level and learning how to use it. In addition, the program developed in this study was found to be effective in increasing the efficacy of pre-service teachers for the use of AI in science classes. And it was also found that pre-service teachers recognized the aspect of using AI technology as a new teaching·learning strategy and tool that can help students understand science concepts. Accordingly, it was found that the program developed in this study had a positive impact on pre-service teachers' AI utilization competency reinforcement and perception improvement at the basic level. Implications of this were discussed.

Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels

  • Podolsky, Maxim D;Barchuk, Anton A;Kuznetcov, Vladimir I;Gusarova, Natalia F;Gaidukov, Vadim S;Tarakanov, Segrey A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.835-838
    • /
    • 2016
  • Background: Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. Materials and Methods: We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. Results: The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. Conclusions: Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.

A Literature Survey of Machine Learning Based Obstructive Sleep Apnea Diagnosis Research

  • Kim, Seo-Young;Suh, Young-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.113-123
    • /
    • 2020
  • Obstructive sleep apnea (OSA) among sleep disorders is one of relatively common diseases. Patients can be checked for the disease through sleep polysomnography. However, as far as he diagnosis of OSA using polysomnography (PSG) is concerned, many practical problems such as an increasing number of patients, expensive testing cost, discomfort during examination, and the limited number of people for testing have been pointed out. Accordingly, for the purpose of substituting PSG researchers have been actively conducting studies on OSA diagnosis based on machine learning using bio signals. In this regard, we review a rich body of existing OSA diagnosis studies applying machine learning techniques based on bio-signal data. As a result, this paper presents a novel taxonomy of the reviewed studies and provides their comprehensive comparative analysis results. Also, we reveal various limitations of the studies using the bio signals and suggest several improvements about utilization of the used machine learning methods. Finally, this paper presents future research topics related to the application of machine learning techniques using bio signals.

Prediction Model of CNC Processing Defects Using Machine Learning (머신러닝을 이용한 CNC 가공 불량 발생 예측 모델)

  • Han, Yong Hee
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.249-255
    • /
    • 2022
  • This study proposed an analysis framework for real-time prediction of CNC processing defects using machine learning-based models that are recently attracting attention as processing defect prediction methods, and applied it to CNC machines. Analysis shows that the XGBoost, CatBoost, and LightGBM models have the same best accuracy, precision, recall, F1 score, and AUC, of which the LightGBM model took the shortest execution time. This short run time has practical advantages such as reducing actual system deployment costs, reducing the probability of CNC machine damage due to rapid prediction of defects, and increasing overall CNC machine utilization, confirming that the LightGBM model is the most effective machine learning model for CNC machines with only basic sensors installed. In addition, it was confirmed that classification performance was maximized when an ensemble model consisting of LightGBM, ExtraTrees, k-Nearest Neighbors, and logistic regression models was applied in situations where there are no restrictions on execution time and computing power.

Estimating the tensile strength of geopolymer concrete using various machine learning algorithms

  • Danial Fakhri;Hamid Reza Nejati;Arsalan Mahmoodzadeh;Hamid Soltanian;Ehsan Taheri
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.175-193
    • /
    • 2024
  • Researchers have embarked on an active investigation into the feasibility of adopting alternative materials as a solution to the mounting environmental and economic challenges associated with traditional concrete-based construction materials, such as reinforced concrete. The examination of concrete's mechanical properties using laboratory methods is a complex, time-consuming, and costly endeavor. Consequently, the need for models that can overcome these drawbacks is urgent. Fortunately, the ever-increasing availability of data has paved the way for the utilization of machine learning methods, which can provide powerful, efficient, and cost-effective models. This study aims to explore the potential of twelve machine learning algorithms in predicting the tensile strength of geopolymer concrete (GPC) under various curing conditions. To fulfill this objective, 221 datasets, comprising tensile strength test results of GPC with diverse mix ratios and curing conditions, were employed. Additionally, a number of unseen datasets were used to assess the overall performance of the machine learning models. Through a comprehensive analysis of statistical indices and a comparison of the models' behavior with laboratory tests, it was determined that nearly all the models exhibited satisfactory potential in estimating the tensile strength of GPC. Nevertheless, the artificial neural networks and support vector regression models demonstrated the highest robustness. Both the laboratory tests and machine learning outcomes revealed that GPC composed of 30% fly ash and 70% ground granulated blast slag, mixed with 14 mol of NaOH, and cured in an oven at 300°F for 28 days exhibited superior tensile strength.

Production Data Utilization System for Improving the Competitiveness of SMEs (중소기업 경쟁력 향상을 위한 생산현황 데이터 활용 시스템)

  • Lee, Seung-Woo;Nam, So-Jeong;Lee, Jai-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.2
    • /
    • pp.55-61
    • /
    • 2014
  • Recently, the manufacturing system is being changed in a mass customization and small quantity batch production. MES is a powerful production management tool supporting production optimization from the process initiation to the final shipment. It is a production management system which plans and executes based on the production data in the shop floor. This study deployed the utilization of production data and web HMI system to process real-time production data through the collection with the shop floor. The developed system was applied to the equipment operating time and other production data could be processed with the real-time. The proposed system and web HMI can be applied for various production systems by using different logic.