• Title/Summary/Keyword: Machine Learning and Artificial Intelligence

Search Result 792, Processing Time 0.027 seconds

Artificial intelligence (AI) based analysis for global warming mitigations of non-carbon emitted nuclear energy productions

  • Tae Ho Woo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4282-4286
    • /
    • 2023
  • Nuclear energy is estimated by the machine learning method as the mathematical quantifications where neural networking is the major algorithm of the data propagations from input to output. As the aspect of nuclear energy, the other energy sources of the traditional carbon emission-characterized oil and coal are compared. The artificial intelligence (AI) oriented algorithm like the intelligence of a robot is applied to the modeling in which the mimicking of biological neurons is utilized in the mathematical calculations. There are graphs for nuclear priority weighted by climate factor and for carbon dioxide mitigation weighted by climate factor in which the carbon dioxide quantities are divided by the weighting that produces some results. Nuclear Priority and CO2 Mitigation values give the dimensionless values that are the comparative quantities with the normalization in 2010. The values are 1.0 in 2010 of the graphs which are changed to 24.318 and 0.0657 in 2040, respectively. So, the carbon dioxide emissions could be reduced in this study.

Distributed Federated Learning-based Intrusion Detection System for Industrial IoT Networks (산업 IoT 전용 분산 연합 학습 기반 침입 탐지 시스템)

  • Md Mamunur Rashid;Piljoo Choi;Suk-Hwan Lee;Ki-Ryong Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.151-153
    • /
    • 2023
  • Federated learning (FL)-based network intrusion detection techniques have enormous potential for securing the Industrial Internet of Things (IIoT) cybersecurity. The openness and connection of systems in smart industrial facilities can be targeted and manipulated by malicious actors, which emphasizes the significance of cybersecurity. The conventional centralized technique's drawbacks, including excessive latency, a congested network, and privacy leaks, are all addressed by the FL method. In addition, the rich data enables the training of models while combining private data from numerous participants. This research aims to create an FL-based architecture to improve cybersecurity and intrusion detection in IoT networks. In order to assess the effectiveness of the suggested approach, we have utilized well-known cybersecurity datasets along with centralized and federated machine learning models.

Study of Fuel Pump Failure Prognostic Based on Machine Learning Using Artificial Neural Network (인공신경망을 이용한 머신러닝 기반의 연료펌프 고장예지 연구)

  • Choi, Hong;Kim, Tae-Kyung;Heo, Gyeong-Rin;Choi, Sung-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.52-57
    • /
    • 2019
  • The key technology of the fourth industrial revolution is artificial intelligence and machine learning. In this study, FMEA was performed on fuel pumps used as key items in most systems to identify major failure components, and artificial neural networks were built using big data. The main failure mode of the fuel pump identified by the test was coil damage due to overheating. Based on the artificial neural network built, machine learning was conducted to predict the failure and the mean error rate was 4.9% when the number of hidden nodes in the artificial neural network was three and the temperature increased to $140^{\circ}C$ rapidly.

Study on Development of Graphic User Interface for TensorFlow Based on Artificial Intelligence (인공지능 기반의 TensorFlow 그래픽 사용자 인터페이스 개발에 관한 연구)

  • Song, Sang Gun;Kang, Sung Hong;Choi, Youn Hee;Sim, Eun Kyung;Lee, Jeong- Wook;Park, Jong-Ho;Jung, Yeong In;Choi, Byung Kwan
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.221-229
    • /
    • 2018
  • Machine learning and artificial intelligence are core technologies for the 4th industrial revolution. However, it is difficult for the general public to get familiar with those technologies because most people lack programming ability. Thus, we developed a Graphic User Interface(GUI) to overcome this obstacle. We adopted TensorFlow and used .Net of Microsoft for the develop. With this new GUI, users can manage data, apply algorithms, and run machine learning without coding ability. We hope that this development will be used as a basis for developing artificial intelligence in various fields.

Recent Progress of Smart Sensor Technology Relying on Artificial Intelligence (인공지능 기반의 스마트 센서 기술 개발 동향)

  • Shin, Hyun Sik;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • With the rapid development of artificial intelligence technology that gives existing sensors functions similar to human intelligence is drawing attention. Previously, researches were mainly focused on an improvement of fundamental performance indicators as sensors. However, recently, attempts to combine artificial intelligence such as classification and prediction with sensors have been explored. Based on this, intelligent sensor research has been actively reported in almost all kinds of sensing fields such as disease detection, motion detection, and gas sensor. In this paper, we introduce the basic concepts, types, and driving mechanisms of artificial intelligence and review some examples of its use.

MalDC: Malicious Software Detection and Classification using Machine Learning

  • Moon, Jaewoong;Kim, Subin;Park, Jangyong;Lee, Jieun;Kim, Kyungshin;Song, Jaeseung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1466-1488
    • /
    • 2022
  • Recently, the importance and necessity of artificial intelligence (AI), especially machine learning, has been emphasized. In fact, studies are actively underway to solve complex and challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI security systems, and AI surgical robots. Information security that involves analysis and response to security vulnerabilities of software is no exception to this and is recognized as one of the fields wherein significant results are expected when AI is applied. This is because the frequency of malware incidents is gradually increasing, and the available security technologies are limited with regard to the use of software security experts or source code analysis tools. We conducted a study on MalDC, a technique that converts malware into images using machine learning, MalDC showed good performance and was able to analyze and classify different types of malware. MalDC applies a preprocessing step to minimize the noise generated in the image conversion process and employs an image augmentation technique to reinforce the insufficient dataset, thus improving the accuracy of the malware classification. To verify the feasibility of our method, we tested the malware classification technique used by MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet & Security Agency (KISA). Consequently, an accuracy of 97% was achieved.

Design and Utilization of Connected Data Architecture-based AI Service of Mass Distributed Abyss Storage (대용량 분산 Abyss 스토리지의 CDA (Connected Data Architecture) 기반 AI 서비스의 설계 및 활용)

  • Cha, ByungRae;Park, Sun;Seo, JaeHyun;Kim, JongWon;Shin, Byeong-Chun
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.99-107
    • /
    • 2021
  • In addition to the 4th Industrial Revolution and Industry 4.0, the recent megatrends in the ICT field are Big-data, IoT, Cloud Computing, and Artificial Intelligence. Therefore, rapid digital transformation according to the convergence of various industrial areas and ICT fields is an ongoing trend that is due to the development of technology of AI services suitable for the era of the 4th industrial revolution and the development of subdivided technologies such as (Business Intelligence), IA (Intelligent Analytics, BI + AI), AIoT (Artificial Intelligence of Things), AIOPS (Artificial Intelligence for IT Operations), and RPA 2.0 (Robotic Process Automation + AI). This study aims to integrate and advance various machine learning services of infrastructure-side GPU, CDA (Connected Data Architecture) framework, and AI based on mass distributed Abyss storage in accordance with these technical situations. Also, we want to utilize AI business revenue model in various industries.

A Quantitative Analysis on Machine Learning and Smart Farm with Bibliographic Data from 2013 to 2023

  • Yong Sauk Hau
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.388-393
    • /
    • 2024
  • The convergence of machine learning and smart farm is becoming more and more important. The purpose of this research is to quantitatively analyze machine learning and smart farm with bibliographic data from 2013 to 2023. This study analyzed the 251 articles, filtered from the Web of Science, with regard to the article publication trend, the article citation trend, the top 10 research area, and the top 10 keywords representing the articles. The quantitative analysis results reveal the four points: First, the number of article publications in machine learning and smart farm continued growing from 2016. Second, the article citations in machine learning and smart farm drastically increased since 2018. Third, Computer Science, Engineering, Agriculture, Telecommunications, Chemistry, Environmental Sciences Ecology, Material Science, Instruments Instrumentation, Science Technology Other Topics, and Physics are top 10 research areas. Fourth, it is 'machine learning', 'smart farming', 'internet of things', 'precision agriculture', 'deep learning', 'agriculture', 'big data', 'machine', 'smart' and 'smart agriculture' that are the top 10 keywords composing authors' keywords in the articles in machine learning and smart farm from 2013 to 2023.

Deep Learning based Scrapbox Accumulated Status Measuring

  • Seo, Ye-In;Jeong, Eui-Han;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.27-32
    • /
    • 2020
  • In this paper, we propose an algorithm to measure the accumulated status of scrap boxes where metal scraps are accumulated. The accumulated status measuring is defined as a multi-class classification problem, and the method with deep learning classify the accumulated status using only the scrap box image. The learning was conducted by the Transfer Learning method, and the deep learning model was NASNet-A. In order to improve the accuracy of the model, we combined the Random Forest classifier with the trained NASNet-A and improved the model through post-processing. Testing with 4,195 data collected in the field showed 55% accuracy when only NASNet-A was applied, and the proposed method, NASNet with Random Forest, improved the accuracy by 88%.

Failure Prognostics of Start Motor Based on Machine Learning (머신러닝을 이용한 스타트 모터의 고장예지)

  • Ko, Do-Hyun;Choi, Wook-Hyun;Choi, Seong-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.85-91
    • /
    • 2021
  • In our daily life, artificial intelligence performs simple and complicated tasks like us, including operating mobile phones and working at homes and workplaces. Artificial intelligence is used in industrial technology for diagnosing various types of equipment using the machine learning technology. This study presents a fault mode effect analysis (FMEA) of start motors using machine learning and big data. Through multiple data collection, we observed that the primary failure of the start motor was caused by the melting of the magnetic switch inside the start motor causing it to fail. Long-short-term memory (LSTM) was used to diagnose the condition of the magnetic locations, and synthetic data were generated using the synthetic minority oversampling technique (SMOTE). This technique has the advantage of increasing the data accuracy. LSTM can also predict a start motor failure.