• 제목/요약/키워드: Machine Learning SVM

검색결과 625건 처리시간 0.028초

SVM 학습 알고리즘을 이용한 자동차 썬루프의 부품 유무 비전검사 시스템 (A Learning-based Visual Inspection System for Part Verification in a Panorama Sunroof Assembly Line using the SVM Algorithm)

  • 김기석;이삭;조재수
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1099-1104
    • /
    • 2013
  • This paper presents a learning-based visual inspection method that addresses the need for an improved adaptability of a visual inspection system for parts verification in panorama sunroof assembly lines. It is essential to ensure that the many parts required (bolts and nuts, etc.) are properly installed in the PLC sunroof manufacturing process. Instead of human inspectors, a visual inspection system can automatically perform parts verification tasks to assure that parts are properly installed while rejecting any that are improperly assembled. The proposed visual inspection method is able to adapt to changing inspection tasks and environmental conditions through an efficient learning process. The proposed system consists of two major modules: learning mode and test mode. The SVM (Support Vector Machine) learning algorithm is employed to implement part learning and verification. The proposed method is very robust for changing environmental conditions, and various experimental results show the effectiveness of the proposed method.

텍스트 분류 기법의 발전 (Enhancement of Text Classification Method)

  • 신광성;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.155-156
    • /
    • 2019
  • Classification and Regression Tree (CART), SVM (Support Vector Machine) 및 k-nearest neighbor classification (kNN)과 같은 기존 기계 학습 기반 감정 분석 방법은 정확성이 떨어졌습니다. 본 논문에서는 개선 된 kNN 분류 방법을 제안한다. 개선 된 방법 및 데이터 정규화를 통해 정확성 향상의 목적이 달성됩니다. 그 후, 3 가지 분류 알고리즘과 개선 된 알고리즘을 실험 데이터에 기초하여 비교 하였다.

  • PDF

분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류 (Support Vector Machine Classification of Hyperspectral Image using Spectral Similarity Kernel)

  • 최재완;변영기;김용일;유기윤
    • 대한공간정보학회지
    • /
    • 제14권4호통권38호
    • /
    • pp.71-77
    • /
    • 2006
  • 통계학습이론에 기반하고 있는 Support Vector Machine(SVM)은 구조적 위험 최소화원리를 바탕으로 하는 학습 알고리즘이다. 일반적으로SVM은 비선형 경계를 결정하고 자료를 분류하기 위해서 커널(kernel)을 사용한다. 그러나 기존의 커널들은 두 벡터간의 내적이나 거리차를 이용하여 유사도를 측정하기 때문에 하이퍼스펙트럴 영상분류에 효과적으로 적용될 수 없다. 본 논문에서는 이를 해결하기 위해서 분광유사도커널(Spectral similarity kernel)을 제안한다. 분광유사도 커널은 두 벡터의 거리차와 각 차이를 모두 계산하는 지역적 커널로 하이퍼스펙트럴 영상의 분광특성을 효과적으로 고려할 수 있다. 이를 검증하기 위해서 Hyperion 영상에 polynomial kernel, RBF kernel을 사용한 SVM 분류기와 분광유사도 커널을 사용한 SVM 분류기를 적용하여 토지피복분류를 시행하였다. 분류결과를 통해서 분광유사도 커널을 사용한 SVM 분류기가 정량적, 공간적으로 가장 우수한 결과를 보임을 확인하였다.

  • PDF

RFA: Recursive Feature Addition Algorithm for Machine Learning-Based Malware Classification

  • Byeon, Ji-Yun;Kim, Dae-Ho;Kim, Hee-Chul;Choi, Sang-Yong
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권2호
    • /
    • pp.61-68
    • /
    • 2021
  • 최근 악성코드와 정상 바이너리를 분류하기 위해 기계학습을 이용하는 기술이 다양하게 연구되고 있다. 효과적인 기계학습을 위해서는 악성코드와 정상 바이너리를 식별하기 위한 Feature를 잘 추출하는 것이 무엇보다 중요하다. 본 논문에서는 재귀적인 방법을 이용하여 기계학습에 활용하기 위한 Feature 추출 방법인 RFA(Recursive Feature Addition) 제안한다. 제안하는 방법은 기계학습의 성능을 극대화 하기 위해 개별 Feature를 대상으로 재귀적인 방법을 사용하여 최종 Feature Set을 선정한다. 세부적으로는 매 단계마다 개별 Feature 중 최고성능을 내는 Feature를 추출하여, 추출한 Feature를 결합하는 방법을 사용한다. 제안하는 방법을 활용하여 Decision tree, SVM, Random forest, KNN등의 기계학습 알고리즘에 적용한 결과 단계가 지속될수록 기계학습의 성능이 향상되는 것을 검증하였다.

SSVM(Stepwise-Support Vector Machine)을 이용한 반도체 수율 예측 (A Yields Prediction in the Semiconductor Manufacturing Process Using Stepwise Support Vector Machine)

  • 안대웅;고효헌;김지현;백준걸;김성식
    • 산업공학
    • /
    • 제22권3호
    • /
    • pp.252-262
    • /
    • 2009
  • It is crucial to prevent low yields in the semiconductor industry. Since many factors affect variation in yield and they are deeply related, preventing low yield is difficult. There have been substantial researches in the field of yield prediction. Many researchers had used the statistical methods. Many studies have shown that artificial neural network (ANN) achieved better performance than traditional statistical methods. However, despite ANN's superior performance some problems such as over-fitting and poor explanatory power arise. In order to overcome these limitations, a relatively new machine learning technique, support vector machine (SVM), is introduced to classify the yield. SVM is simple enough to be analyzed mathematically, and it leads to high performances in practical applications. This study presents a new efficient classification methodology, Stepwise-SVM (SSVM), for detecting high and low yields. SSVM is step-by-step adjustment of parameters to be precisely the classification for actual high and low yield lot. The objective of this paper is to examine the feasibility of SVM and SSVM in the yield classification. The experimental results show that SVM and SSVM provides a promising alternative to yield classification for the field data.

유전자 프로모터 예측을 위한 Support Vector Machine의 응용 방법에 대한 연구 (A Study On the Application Methods of a Support Vector Machine for Gene Promoter Prediction.)

  • 김기봉
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.714-718
    • /
    • 2007
  • 유전자의 구조 예측 및 발현 기작에 대한 연구는 매우 중요한 사안으로 대두되고 있다. 특히 유전자 발현 제어에 중요한 역할을 하는 프로모터 영역을 예측하는 것은 전체 생명체 네트워크 규명을 위한 단초를 제공하기 때문에 많은 연구가 이루어지고 있다. 본 논문에서는 이러한 진핵생물의 유전자 프로모터 예측을 위한 Support Vector Machine(SVM) 활용방안에 대한 연구내용을 다루고 있다. 특성 벡터 값 생성을 위한 인코딩 방법 및 학습 데이터들의 구성에 대한 다양한 실험을 통해 SVM활용 방안에 대한 올바른 방향을 제시하고 있다.

API 정보와 기계학습을 통한 윈도우 실행파일 분류 (Classifying Windows Executables using API-based Information and Machine Learning)

  • 조대희;임경환;조성제;한상철;황영섭
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1325-1333
    • /
    • 2016
  • 소프트웨어 분류 기법은 저작권 침해 탐지, 악성코드의 분류, 소프트웨어 보관소의 소프트웨어 자동분류 등에 활용할 수 있으며, 불법 소프트웨어의 전송을 차단하기 위한 소프트웨어 필터링 시스템에도 활용할 수 있다. 소프트웨어 필터링 시스템에서 유사도 측정을 통해 불법 소프트웨어를 식별할 경우, 소프트웨어 분류를 활용하여 탐색 범위를 축소하면 평균 비교 횟수를 줄일 수 있다. 본 논문은 API 호출 정보와 기계학습을 통한 윈도우즈 실행파일 분류를 연구한다. 다양한 API 호출 정보 정제 방식과 기계학습 알고리즘을 적용하여 실행파일 분류 성능을 평가한다. 실험 결과, PolyKernel을 사용한 SVM (Support Vector Machine)이 가장 높은 성공률을 보였다. API 호출 정보는 바이너리 실행파일에서 추출할 수 있는 정보이며, 기계학습을 적용하여 변조 프로그램을 식별하고 실행파일의 빠른 분류가 가능하다. 그러므로 API 호출 정보와 기계학습에 기반한 소프트웨어 분류는 소프트웨어 필터링 시스템에 활용하기에 적당하다.

머신러닝을 이용한 앉은 자세 분류 연구 (A Study on Sitting Posture Recognition using Machine Learning)

  • 마상용;홍상표;심현민;권장우;이상민
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1557-1563
    • /
    • 2016
  • According to recent studies, poor sitting posture of the spine has been shown to lead to a variety of spinal disorders. For this reason, it is important to measure the sitting posture. We proposed a strategy for classification of sitting posture using machine learning. We retrieved acceleration data from single tri-axial accelerometer attached on the back of the subject's neck in 5-types of sitting posture. 6 subjects without any spinal disorder were participated in this experiment. Acceleration data were transformed to the feature vectors of principle component analysis. Support vector machine (SVM) and K-means clustering were used to classify sitting posture with the transformed feature vectors. To evaluate performance, we calculated the correct rate for each classification strategy. Although the correct rate of SVM in sitting back arch was lower than that of K-means clustering by 2.0%, SVM's correct rate was higher by 1.3%, 5.2%, 16.6%, 7.1% in a normal posture, sitting front arch, sitting cross-legged, sitting leaning right, respectively. In conclusion, the overall correction rates were 94.5% and 88.84% in SVM and K-means clustering respectively, which means that SVM have more advantage than K-means method for classification of sitting posture.

BCI에서 기계 학습을 위한 간질 뇌파 특징 선택을 통한 차원 감소 방법 분석 (Analysis of Dimensionality Reduction Methods Through Epileptic EEG Feature Selection for Machine Learning in BCI)

  • 양통;;임창균
    • 한국전자통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1333-1342
    • /
    • 2018
  • 지금까지 뇌파(Electroencephalography - EEG)는 뇌전증 진단 및 치료를 위한 가장 중요하고 편리한 방법이었다. 그러나 뇌전증 뇌파 신호의 파형 특성은 매우 약하고 비 정지 상태이며 배경 노이즈가 강하기 때문에 식별하기가 어렵다. 이 논문에서는 간질 뇌파의 특징 선택을 통한 차원 감소를 통한 분류 방법의 효과를 분석한다. 우리는 차원 감소를 위해 주 요소 분석, 커널 요소 분석, 선형 판별 분석 방법을 사용하였다. 차원 감소방법의 성능 분석을 위해 Support Vector Machine: SVM), Logistic Regression(: LR), K-Nearestneighbor(: K-NN), Decision Tree(: DR), Random Forest(: RF) 분류 방법들을 사용해 평가하였다. 실험 결과에 따르면, PCA는 SVM, LR 및 K-NN에서 75% 정확도를 나타냈다. KPCA는 SVM과 K-KNN에서 85%의 성능을 보였으며 LDA는 K-NN를 이용했을 때 100 %의 정확도 보여주었다. 따라서 LDA를 이용한 차원 감소가 뇌전증 EEG 신호에 대한 최고의 분류 결과 보여주었다.

무슬림 관광객 증대를 위한 머신러닝 기반의 할랄푸드 분류 프레임워크 (A Halal Food Classification Framework Using Machine Learning Method for Enhancing Muslim Tourists)

  • 김선아;김정원;원동연;최예림
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제26권3호
    • /
    • pp.273-293
    • /
    • 2017
  • Purpose The purpose of this study is to introduce a framework that helps Muslims to determine whether a food can be consumed. It can complement existing Halal food classification services having a difficulty of constructing Halal food database. Design/methodology/approach The proposed framework includes two components. First, OCR(Optical Character Recognition) technique is utilized to read the food additive information. Second, machine learning methods were used to trained and predicted to determine whether a food can be consumed using the provided information. Findings Among the compared machine learning methods, SVM(Support Vector Machine), DT(Decision Tree), and NB(Naive Bayes), SVM with linear kernel and DT had excellent performance in the Halal food classification. The framework which adopting the proposed framework will enhance the tourism experiences of Muslim tourists who consider keeping the Islamic law most importantly. Furthermore, it can eventually contribute to the enhancement of smart tourism ecosystem.