• 제목/요약/키워드: Machine Learning Inference

검색결과 112건 처리시간 0.023초

A Case Study of Rapid AI Service Deployment - Iris Classification System

  • Yonghee LEE
    • 한국인공지능학회지
    • /
    • 제11권4호
    • /
    • pp.29-34
    • /
    • 2023
  • The flow from developing a machine learning model to deploying it in a production environment suffers challenges. Efficient and reliable deployment is critical for realizing the true value of machine learning models. Bridging this gap between development and publication has become a pivotal concern in the machine learning community. FastAPI, a modern and fast web framework for building APIs with Python, has gained substantial popularity for its speed, ease of use, and asynchronous capabilities. This paper focused on leveraging FastAPI for deploying machine learning models, addressing the potentials associated with integration, scalability, and performance in a production setting. In this work, we explored the seamless integration of machine learning models into FastAPI applications, enabling real-time predictions and showing a possibility of scaling up for a more diverse range of use cases. We discussed the intricacies of integrating popular machine learning frameworks with FastAPI, ensuring smooth interactions between data processing, model inference, and API responses. This study focused on elucidating the integration of machine learning models into production environments using FastAPI, exploring its capabilities, features, and best practices. We delved into the potential of FastAPI in providing a robust and efficient solution for deploying machine learning systems, handling real-time predictions, managing input/output data, and ensuring optimal performance and reliability.

천문학에서의 대용량 자료 분석 (Analysis of massive data in astronomy)

  • 신민수
    • 응용통계연구
    • /
    • 제29권6호
    • /
    • pp.1107-1116
    • /
    • 2016
  • 최근의 탐사 천문학 관측으로부터 대용량 관측 자료가 획득되면서, 기존의 일상적인 자료 분석 방법에 큰 변화가 있었다. 고전적인 통계적인 추론과 더불어 기계학습 방법들이, 자료의 표준화로부터 물리적인 모델을 추론하는 단계까지 자료 분석의 전 과정에서 활용되어 왔다. 적은 비용으로 대형 검출 기기들을 이용할 수 있게 되고, 더불어서 고속의 컴퓨터 네트워크를 통해서 대용량의 자료들을 쉽게 공유할 수 있게 되면서, 기존의 다양한 천문학 자료 분석의 문제들에 대해서 기계학습을 활용하는 것이 보편화되고 있다. 일반적으로 대용량 천문학 자료의 분석은, 자료의 시간과 공간 분포가 가지는 비 균질성 때문에 야기되는 효과를 고려해야 하는 문제를 가진다. 오늘날 증가하는 자료의 규모는 자연스럽게 기계학습의 활용과 더불어 병렬 분산 컴퓨팅을 필요로 하고 있다. 그러나 이러한 병렬 분산 분석 환경의 일반적인 자료 분석에서의 활용은 아직 활발하지 않은 상황이다. 천문학에서 기계학습을 사용하는데 있어서, 충분한 학습 자료를 관측을 통해 획득하는 것이 어렵고, 그래서 다양한 출처의 자료를 모아서 학습 자료를 수집해야 는 것이 일반적이다. 따라서 앞으로 준 지도학습이나 앙상블 학습과 같은 방법의 역할이 중요해 질 것으로 예상된다.

Experiment on Intermediate Feature Coding for Object Detection and Segmentation

  • Jeong, Min Hyuk;Jin, Hoe-Yong;Kim, Sang-Kyun;Lee, Heekyung;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
    • 방송공학회논문지
    • /
    • 제25권7호
    • /
    • pp.1081-1094
    • /
    • 2020
  • With the recent development of deep learning, most computer vision-related tasks are being solved with deep learning-based network technologies such as CNN and RNN. Computer vision tasks such as object detection or object segmentation use intermediate features extracted from the same backbone such as Resnet or FPN for training and inference for object detection and segmentation. In this paper, an experiment was conducted to find out the compression efficiency and the effect of encoding on task inference performance when the features extracted in the intermediate stage of CNN are encoded. The feature map that combines the features of 256 channels into one image and the original image were encoded in HEVC to compare and analyze the inference performance for object detection and segmentation. Since the intermediate feature map encodes the five levels of feature maps (P2 to P6), the image size and resolution are increased compared to the original image. However, when the degree of compression is weakened, the use of feature maps yields similar or better inference results to the inference performance of the original image.

PubMiner: Machine Learning-based Text Mining for Biomedical Information Analysis

  • Eom, Jae-Hong;Zhang, Byoung-Tak
    • Genomics & Informatics
    • /
    • 제2권2호
    • /
    • pp.99-106
    • /
    • 2004
  • In this paper we introduce PubMiner, an intelligent machine learning based text mining system for mining biological information from the literature. PubMiner employs natural language processing techniques and machine learning based data mining techniques for mining useful biological information such as protein­protein interaction from the massive literature. The system recognizes biological terms such as gene, protein, and enzymes and extracts their interactions described in the document through natural language processing. The extracted interactions are further analyzed with a set of features of each entity that were collected from the related public databases to infer more interactions from the original interactions. An inferred interaction from the interaction analysis and native interaction are provided to the user with the link of literature sources. The performance of entity and interaction extraction was tested with selected MEDLINE abstracts. The evaluation of inference proceeded using the protein interaction data of S. cerevisiae (bakers yeast) from MIPS and SGD.

무선 센서 네트워크 환경에서 기계 학습을 이용한 데이터 추론에 관한 연구 (A Study on Data Inference using Machine Learning in WSN Environment)

  • 정용진;조경우;오창헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.571-573
    • /
    • 2018
  • 무선 센서 네트워크 환경에서 센서 노드로부터 수집되는 데이터의 소실은 센서 노드의 히든노드 및 전력 부족 등의 문제로 발생된다. 이러한 문제를 해결하기 위해 효율적으로 망을 유지하기 위한 연구가 활발히 진행되어 왔으나, 망 유지가 불가능한 상황의 연구는 전무하다. 따라서 망 유지가 불가능한 상황에서의 소실된 데이터를 추론하기 위한 연구가 필요하다. 본 논문에서는 소실된 데이터를 추론하기 위해 특정 도시의 미세 먼지 데이터를 이용한다. 기계 학습을 통해 축적된 데이터의 분석 및 소실된 데이터의 추론 가능성을 확인한다.

  • PDF

Steel-UHPC composite dowels' pull-out performance studies using machine learning algorithms

  • Zhihua Xiong;Zhuoxi Liang;Xuyao Liu;Markus Feldmann;Jiawen Li
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.531-545
    • /
    • 2023
  • Composite dowels are implemented as a powerful alternative to headed studs for the efficient combination of Ultra High-Performance Concrete (UHPC) with high-strength steel in novel composite structures. They are required to provide sufficient shear resistance and ensure the transmission of tensile forces in the composite connection in order to prevent lifting of the concrete slab. In this paper, the load bearing capacity of puzzle-shaped and clothoidal-shaped dowels encased in UHPC specimen were investigated based on validated experimental test data. Considering the influence of the embedment depth and the spacing width of shear dowels, the characteristics of UHPC square plate on the load bearing capacity of composite structure, 240 numeric models have been constructed and analyzed. Three artificial intelligence approaches have been implemented to learn the discipline from collected experimental data and then make prediction, which includes Artificial Neural Network-Particle Swarm Optimization (ANN-PSO), Adaptive Neuro-Fuzzy Inference System (ANFIS) and an Extreme Learning Machine (ELM). Among the factors, the embedment depth of composite dowel is proved to be the most influential parameter on the load bearing capacity. Furthermore, the results of the prediction models reveal that ELM is capable to achieve more accurate prediction.

인과적 인공지능 기반 데이터 분석 기법의 심층 분석을 통한 인과적 AI 기술의 현황 분석 (Deep Analysis of Causal AI-Based Data Analysis Techniques for the Status Evaluation of Casual AI Technology)

  • 차주호;류민우
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.45-52
    • /
    • 2023
  • With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.

Runoff estimation using modified adaptive neuro-fuzzy inference system

  • Nath, Amitabha;Mthethwa, Fisokuhle;Saha, Goutam
    • Environmental Engineering Research
    • /
    • 제25권4호
    • /
    • pp.545-553
    • /
    • 2020
  • Rainfall-Runoff modeling plays a crucial role in various aspects of water resource management. It helps significantly in resolving the issues related to flood control, protection of agricultural lands, etc. Various Machine learning and statistical-based algorithms have been used for this purpose. These techniques resulted in outcomes with an acceptable rate of success. One of the pertinent machine learning algorithms namely Adaptive Neuro Fuzzy Inference System (ANFIS) has been reported to be a very effective tool for the purpose. However, the computational complexity of ANFIS is a major hindrance in its application. In this paper, we resolved this problem of ANFIS by incorporating one of the evolutionary algorithms known as Particle Swarm Optimization (PSO) which was used in estimating the parameters pertaining to ANFIS. The results of the modified ANFIS were found to be satisfactory. The performance of this modified ANFIS is then compared with conventional ANFIS and another popular statistical modeling technique namely ARIMA model with respect to the forecasting of runoff. In the present investigation, it was found that proposed PSO-ANFIS performed better than ARIMA and conventional ANFIS with respect to the prediction accuracy of runoff.

인공지능시대의 경혈 주치 연구를 위한 제언 (Suggestions for the Study of Acupoint Indications in the Era of Artificial Intelligence)

  • 채윤병
    • 동의생리병리학회지
    • /
    • 제35권5호
    • /
    • pp.132-138
    • /
    • 2021
  • Artificial intelligence technology sheds light on new ways of innovating acupuncture research. As acupoint selection is specific to target diseases, each acupoint is generally believed to have a specific indication. However, the specificity of acupoint selection may be not always same with the specificity of acupoint indication. In this review, we propose that the specificity of acupoint indication can be inferred from clinical data using reverse inference. Using forward inference, the prescribed acupoints for each disease can be quantified for the specificity of acupoint selection. Using reverse inference, targeted diseases for each acupoint can be quantified for the specificity of acupoint indication. It is noteworthy that the selection of an acupoint for a particular disease does not imply the acupoint has specific indications for that disease. Electronic medical record includes various symptoms and chosen acupoint combinations. Data mining approach can be useful to reveal the complex relationships between diseases and acupoints from clinical data. Combining the clinical information and the bodily sensation map, the spatial patterns of acupoint indication can be further estimated. Interoperable medical data should be collected for medical knowledge discovery and clinical decision support system. In the era of artificial intelligence, machine learning can reveal the associations between diseases and prescribed acupoints from large scale clinical data warehouse.

추론 능력에 기반한 음성으로부터의 감성 인식 (Inference Ability Based Emotion Recognition From Speech)

  • 박창현;심귀보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.123-125
    • /
    • 2004
  • Recently, we are getting to interest in a user friendly machine. The emotion is one of most important conditions to be familiar with people. The machine uses sound or image to express or recognize the emotion. This paper deals with the method of recognizing emotion from the sound. The most important emotional component of sound is a tone. Also, the inference ability of a brain takes part in the emotion recognition. This paper finds empirically the emotional components from the speech and experiment on the emotion recognition. This paper also proposes the recognition method using these emotional components and the transition probability.

  • PDF