• 제목/요약/키워드: Machine Learning #2

검색결과 1,718건 처리시간 0.024초

Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구 (Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models)

  • 이사로;오현주
    • 대한원격탐사학회지
    • /
    • 제35권2호
    • /
    • pp.299-316
    • /
    • 2019
  • 본 연구는 지리정보시스템(GIS) 환경에서 확률 모델인 Weight Of Evidence (WOE)와 Evidential Belief Function (EBF), 기계학습 모델인 Artificial Neural Networks (ANN) 모델을 이용하여 평창지역의 산사태 취약성도를 공간적으로 분석하고 예측하였다. 본 연구지역은 2006년 태풍 에위니아에 의한 집중호우로 산사태가 많이 발생하여 많은 재산 및 인명피해가 발생하였다. 산사태 취약성도를 작성하기 위해 항공사진을 이용하여 3,955개의 방대한 산사태 발생 위치를 탐지하였고, 환경공간정보인 지형, 지질, 토양, 산림 및 토지이용 등의 공간 데이터를 수집하여 공간데이터베이스에 구축하였다. 이러한 공간데이터베이스를 이용하여 산사태에 영향을 줄 수 있는 인자 17개를 추출하여 입력 인자와 EBF, WOE, ANN 모델을 이용하여 산사태 취약성도를 작성하고 검증하였다. 작성 및 검증을 위해 산사태 자료는 각각 50%씩 나누어서 훈련 및 검증을 실시하였고, 검증결과 WOE 모델의 경우는 74.73%, EBF 모델의 경우는 75.03%, ANN 모델의 경우는 70.87%의 예측 정확도를 나타내었다. 본 연구에 사용된 모델 중 EBF 모델이 가장 높은 정확도를 나타냈으며, 모든 모델에서 70% 이상의 예측 정확도를 보여 본 연구에서 사용된 기법이 산사태 취약성도 작성에 유효함을 나타내었다. 본 연구에서 제안된 WOE, EBF, ANN 모델과 산사태 취약성도는 이전에 산사태가 발생하지 않은 지역의 산사태를 예측하는 데 사용될 수 있다. 이러한 취약성도는 산사태 위험 감소를 촉진하고, 토지 이용 정책 및 개발을 위한 기초자료 역할을 할 수 있으며, 궁극적으로 산사태 재해 예방을 위한 시간과 비용을 절약할 수 있다. 향후 보다 많은 지역에서 산사태 취약성도 작성 방법을 적용하여 산사태 위험 예측을 위한 일반화된 모델을 이끌어 내야 한다.

개발영향과 멸종위기종의 서식적합성을 고려한 보전 우선순위 선정 (Spatial Conservation Prioritization Considering Development Impacts and Habitat Suitability of Endangered Species)

  • 모용원
    • 한국환경생태학회지
    • /
    • 제35권2호
    • /
    • pp.193-203
    • /
    • 2021
  • 인간의 개발로 점차 멸종위기 생물종이 증가하고 있어, 충분한 보호지역의 선제적 확보가 중요한 상황이다. 따라서 본 연구에서는 인간의 개발영향을 고려했을 때 앞으로 보호지역 선정 시 고려해야 할 보전 우선순위지역을 확인하였다. 보전 우선순위 도출은 보전계획 의사결정 지원 소프트웨어인 MARXAN을 이용하여 기존 보호지역 포함 여부와 개발영향 반영여부를 기준으로 총 네 가지의 시나리오로 분석하였다. 개발영향은 개발면적 비율, 인구밀도, 도로망 체계, 교통량을 이용하여 도출하였으며, 생물종 보전 대상 지역은 제 3차 전국자연환경조사 자료의 조류, 포유류, 양서파충류의 출현자료를 이용하여 도출한 서식적합지역을 이용하였다. 이 두 가지 요인을 입력 자료로 기계학습 기반 최적화방법론을 이용하여 보전 우선순위 지역을 도출하였다. 연구결과, 멸종위기 생물종을 보전하는데 중요한 역할을 할 것으로 기대되는 지역이 기존 보호지역과 떨어진 지역에서 다수 나타났으며, 개발영향을 고려했을 때는 보전우선순위 지역이 파편화되어 나타남을 알 수 있었다. 개발영향과 기존보호지역을 모두 고려했을 때에도 기존 보호지역 주변으로 이미 도로개발이 많이 이뤄져 기존 보호지역과는 떨어진 지역에서 우선순위가 높게 나타났다. 따라서 개발영향을 고려하여 멸종위기종 보호하기 위해서는 기존 보호지역 주변 이외의 지역도 검토해볼 필요가 있으며, 파편화되어 나타나는 보전 우선순위지역에 대한 대응방안 모색이 필요함을 알 수 있었다.

다충실도 모형화를 통한 공기로 모사된 측방제트가 유도무기의 공력특성에 미치는 영향 연구 (On the Effect of Air-Simulated Side-Jets on the Aerodynamic Characteristics of a Missile by Multi-Fidelity Modeling)

  • 강신성;강다영;이경훈
    • 한국항공우주학회지
    • /
    • 제49권2호
    • /
    • pp.95-106
    • /
    • 2021
  • 측방제트는 조종면에 비해 즉각적인 유도무기 기동이 가능하지만 자유류를 간섭하여 공력계수에 영향을 줄 수 있다. 공력계수에 대한 측방제트의 영향을 파악하기 위해 측방제트를 공기로 모사한 후 측방제트 유무에 따른 공력계수 차이를 다충실도 모형을 사용하여 살펴본다. 측방제트 유무에 따라 공력계수 예측 모형으로 추정된 공력계수 간 차이를 계산하여 측방제트의 영향을 마하수, 뱅크각, 받음각의 변화에 따라 조사한다. 분석 결과, 종방향 힘 및 모멘트 계수는 비대칭적으로 발달한 측방제트에 큰 영향을 받았으며, 횡방향 힘 및 모멘트 계수는 -30°와 +30° 사이 뱅크각에서 최대로 변동하였다. 이에 반해 축방향 힘 계수는 측방제트에 영향을 받지 않았으며, 축방향 모멘트 계수는 마하수 변화에 대한 표본 부족으로 측방제트의 영향을 판단하기 어려웠다. 종합하면 측방제트가 종방향 및 횡방향 공력계수에 주요한 영향을 주어 유도무기 자세 변화를 일으킨다는 것을 확인하였다.

기계학습 기반 토픽모델링을 이용한 학술지 "자원환경지질"의 연구주제 분류 및 연구동향 분석 (Topic Model Analysis of Research Themes and Trends in the Journal of Economic and Environmental Geology)

  • 김태용;박혜민;허준용;양민준
    • 자원환경지질
    • /
    • 제54권3호
    • /
    • pp.353-364
    • /
    • 2021
  • 국내 지질학의 연구 분야는 20세기 중반 이후부터 꾸준하게 발전되어왔다. 학술지 "자원환경지질"은 국내 지질학을 대표하는 역사가 긴 학술지로 지질학을 바탕으로 하는 융복합연구 논문이 게재되고 있다. 본 연구는 학술지 "자원환경지질"에 게재된 논문을 대상으로 문헌 고찰(literature review)을 수행하여 지질학의 역사와 발전에 대해 논의하고자 한다. 1968년부터 2020년까지 총 2,571편의 논문 제목, 주제어, 다국어 초록을 수집하였으며, Latent Dirichlet Allocation (LDA) 기반 토픽모델링을 실시하여 연구 주제를 분류하고 연구 동향과 주제간 연관성을 확인하였다. 학술지 "자원환경지질"은 총 8개의 연구주제('암석학 및 지구화학', '수문학 및 수리지질학', '광상학', '화산학', '토양오염 및 복원학', '기초지질 및 구조지질학', '지구물리 및 물리탐사', '점토광물')로 분류할 수 있었다. 1994년 이전에는 '광상학', '화산학', '기초지질 및 구조지질학'의 연구주제들이 활발하게 연구되었으며, 이후 '수문학 및 수리지질학', '토양오염 및 복원학', '지구물리 및 물리탐사', '점토광물'의 연구주제들이 성행하였다. 연관성분석(network analysis)결과, 학술지 "자원환경지질"은 '광상학'을 기반으로 융복합적 연구 논문들이 게재되었다는 것을 확인하였다. 본 연구의 결과는 지질학을 다루는 연구자들에게 문헌 고찰의 새로운 방법론을 제시하여 지질학의 역사에 대한 이해를 제공했음에 의의가 있다.

POI(Practical Openness Index)를 활용한 문헌정보학 연구자 국제학술논문의 개방성 연구 (Study on the Openness of International Academic Papers by Researchers in Library and Information Science Using POI (Practical Openness Index))

  • 조재인
    • 한국도서관정보학회지
    • /
    • 제52권2호
    • /
    • pp.25-44
    • /
    • 2021
  • OA 논문이 증가하는 상황에서 개별 연구자의 연구 성과 유통이 얼마나 개방적인지를 지수화하는 POI(Practical Openness Index)가 등장하였다. 본 연구는 국내 문헌정보학 연구자들이 국제학술지에 출판한 논문을 대상으로 OA 여부와 방식을 조사하고 연구자 단위의 POI를 도출해 지수의 분포를 살펴보았다. 또한 연구자의 세부 연구 분야나 국제협력 활동이 개방성에 관련성을 보이는지 분석하였다. 그 결과 Unpaywall을 통해 정상적으로 OA 여부와 방식이 식별된 논문은 82명 연구자의 492건으로 나타났으며, 20.7%의 논문만이 공개되어 있는 것으로 분석되었다. 두 번째, 골드 OA 방식의 공개 논문은 의학 분야 저널에 수록된 텍스트마이닝 분야 논문이 많았으며, 그린 OA방식으로 공개된 논문은 외국인 공동저자 소속 기관의 리포지터리나 PMC와 같은 초국가적 주제 리포지터리에서 공개되고 있는 것으로 확인되었다. 세 번째, POI 지수는 절반 가량의 연구자가 0으로 나타났으나, 계량정보학, 기계학습 및 지식처리 영역의 연구자들에게서 상대적으로 높게 나타났다. 또한 연구자의 해외공동연구 활동이 논문 공개와 관련성이 있는 것으로 분석되었다.

Back TranScription(BTS)기반 데이터 구축 검증 연구 (A Study on Verification of Back TranScription(BTS)-based Data Construction)

  • 박찬준;서재형;이설화;문현석;어수경;임희석
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.109-117
    • /
    • 2021
  • 최근 인간과 컴퓨터의 상호작용(HCI)을 위한 수단으로 음성기반 인터페이스의 사용률이 높아지고 있다. 이에 음성인식 결과에 오류를 교정하기 위한 후처리기에 대한 관심 또한 높아지고 있다. 그러나 sequence to sequence(S2S)기반의 음성인식 후처리기를 제작하기 위해서는 데이터 구축을 위해 human-labor가 많이 소요된다. 최근 기존의 구축 방법론의 한계를 완화하기 위하여 음성인식 후처리기를 위한 새로운 데이터 구축 방법론인 Back TranScription(BTS)이 제안되었다. BTS란 TTS와 STT 기술을 결합하여 pseudo parallel corpus를 생성하는 기술을 의미한다. 해당 방법론은 전사자(phonetic transcriptor)의 역할을 없애고 방대한 양의 학습 데이터를 자동으로 생성할 수 있기에 데이터 구축에 있어서 시간과 비용을 단축할 수 있다. 본 논문은 기존의 BTS 연구를 확장하여 어떠한 기준 없이 데이터를 구축하는 것보다 어투와 도메인을 고려하여 데이터 구축을 해야함을 실험을 통해 검증을 진행하였다.

부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법 (Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model)

  • 조수현;신경식
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.307-332
    • /
    • 2022
  • 부도예측모형은 여러 금융기관의 신용평가모형의 지식기반(knowledge base)로 이용되고 있으며 최근 머신러닝 기법의 발전으로 이를 도입하여 고도화하려는 다양한 시도가 진행 중이다. 그러나 실제 이러한 모형이 도입되기 위해서는 모형을 이용하는 사용자와 설명제공 대상인 고객의 이해와 수용이 전제되어야 한다. 그러나 사용자에게 제공되는 설명이 현실적 타당성(feasibility)이 결여되어 있다면 모형의 신뢰성과 수용도에 부정적인 영향을 미친다. 이에 따라 본 연구는 도메인 지식을 설명 생성 알고리즘에 통합하여 현실적으로 타당한 설명을 사용자에게 제공하고자 한다. 본 연구에서는 머신러닝 기반의 부도예측 모형에 설명력을 더하는 방법으로 반사실적 예시(counterfactual example) 기반의 로컬영역에서의 설명을 제공하는 모델을 제안한다. 제안 모델은 모형에 이용된 재무변수의 특성을 설명력 생성 알고리즘에 통합하여 설명의 현실적 가능성을 확보하고 이를 통해 사용자의 이해와 수용을 도모하고자 한다. 또한 본 연구에서는 반사실적 예시기반 설명을 위해 유전알고리즘(GA)를 이용하며 다목적함수를 목적함수로 설정하여 반사실적 예시의 주요 기준이 되는 항목을 반영하고 있다. 본 연구는 대표적인 머신러닝 기법인 인공신경망을 이용해 부도예측모형을 학습시킨 뒤, 사후적 방법(post-hoc)으로 설명을 위한 알고리즘을 도입하여 기존의 모형 설명 알고리즘인 LIME과 현실적 가능성이 결여된 반사실적 예시 기반 알고리즘과 비교하였다. 더 나아가 제안방법의 금융/회계 분야의 종사자를 대상으로 서베이를 진행하여 제안 방법의 설명의 질을 정성적으로 평가하였다.

미국 정보 대학의 데이터사이언스 학위 현황 연구 (Degree Programs in Data Science at the School of Information in the States)

  • 박형주
    • 한국도서관정보학회지
    • /
    • 제53권2호
    • /
    • pp.305-332
    • /
    • 2022
  • 본 연구의 목적은 문헌정보학 프로그램이 있는 정보 대학에서 수여하는 데이터사이언스 학위의 현황을 알아보는 것이다. 데이터 수집의 대상은, 2022년 미국도서관협회의 인가를 받은 문헌정보학 프로그램이 있는 64개의 대학에서 수여하는 데이터사이언스 학위였다. 분석의 대상은 각 대학의 데이터사이언스 학위 과정, 부전공, 세부 전공, 수료증, 취업 후 예상 진로, 취업률 등이었다. 교과 분석을 위해 미국 정보 대학에서 제시한 교과목 명, 교과 설명, 중점 교육 분야를 분석했다. 데이터사이언스를 학위 명으로 개설한 대학은 총 8개 정보 대학의 12개 학위였으며, 학사 학위 5개, 석사 학위 6개, 박사 학위 1개였다. 개설된 교과의 주제는 데이터사이언스 입문, 정보검색, 데이터마이닝, 데이터베이스, 데이터와 인문학, 머신 러닝, 메타데이터, 연구 방법론, 데이터 분석 및 시각화, 실습/캡스톤, 윤리 및 보안, 이용자, 정책, 큐레이션 및 관리였다. 대부분의 대학은 전통적인 문헌정보학 교과를 개설하지 않고 있었다. 정보 대학이 제시한 졸업 후 예상 취업 진로는 데이터사이언티스트, 데이터 엔지니어, 데이터 분석가 등이었다. 본 연구의 결과는 정보학의 관점에서 데이터사이언스 학위 과정, 세부 전공, 수료증 또는 교과과정 개발 및 개정을 위한 논의에 활용될 수 있는 기초 자료로 활용되기를 기대한다.

머신러닝 기반 시설재배 딸기 생산량 예측 연구 (A Study on the Prediction of Strawberry Production in Machine Learning Infrastructure)

  • 오한별;임종현;양승원;조용윤;신창선
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.9-16
    • /
    • 2022
  • 최근 농업 현장에서는 빅데이터와 IoT(Internet of Things) 등 기술을 적용하여 디지털농업 스마트팜으로 자동화를 하고 있다. 이러한 스마트팜은 작물의 환경을 측정하고 데이터를 조사하고 가공하여 생산량의 증대와 작물의 품질을 향상하고자 한다. 생산량 예측은 첨단 농업인 스마트팜 디지털 농업에서 중요한 연구로 빅데이터를 활용하여 환경데이터를 분석하고 나아가 생육정보 데이터 품질 관리를 위한 표준화 연구가 필요하다. 본 논문에서는 스마트팜 딸기 농장에서 수집된 환경 및 생산량 데이터를 분석하여 연구하였다. 회귀분석을 기반으로 릿지회귀(Ridge Regression), LightGBM, XGBoost를 사용하여 작물 생산량 예측 모델을 분석하였다. 3가지 모델 중 최적의 모델은 XGBoost로 R2는 82.5%의 설명력을 보였다. 연구 결과 양액흡수량과 환경데이터간의 상관관계를 확인할 수 있었고, 생산량 예측 연구에 대한 유의미한 결과를 얻을 수 있었다. 향후 작물의 생육환경 정보 및 양액의 성분 등 양액흡수량을 연구하여 양액관리를 통해 환경오염 예방 및 양액 절감에 기여할 것으로 기대된다.

다변수 Bidirectional RNN을 이용한 표층수온 결측 데이터 보간 (Imputation of Missing SST Observation Data Using Multivariate Bidirectional RNN)

  • 신용탁;김동훈;김현재;임채욱;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.109-118
    • /
    • 2022
  • 정점 표층 수온 관측 데이터 중 결측 구간의 데이터를 양방향 순환신경망(Bidirectional Recurrent Neural Network, BiRNN) 기법을 이용하여 보간하였다. 인공지능 기법 중 시계열 데이터에 일반적으로 활용되는 Recurrent Neural Networks(RNNs)은 결측 추정 위치까지의 시간 흐름 방향 또는 역방향으로만 추정하기 때문에 장기 결측 구간에는 추정 성능이 떨어진다. 반면, 본 연구에서는 결측 구간 전후의 양방향으로 추정을 하여 장기 결측 데이터에 대해서도 추정 성능을 높일 수 있다. 또한 관측점 주위의 가용한 모든 데이터(수온, 기온, 바람장, 기압, 습도)를 사용함으로써, 이들 상관관계로부터 보간 데이터를 함께 추정하도록 하여 보간 성능을 더욱 높이고자 하였다. 성능 검증을 위하여 통계 기반 모델인 Multivariate Imputation by Chained Equations(MICE)와 기계학습 기반의 Random Forest 모델, 그리고 Long Short-Term Memory(LSTM)을 이용한 RNN 모델과 비교하였다. 7일간의 장기 결측에 대한 보간에 대해서 BiRNN/통계 모델들의 평균 정확도가 각각 70.8%/61.2%이며 평균 오차가 각각 0.28도/0.44도로 BiRNN 모델이 다른 모델보다 좋은 성능을 보인다. 결측 패턴을 나타내는 temporal decay factor를 적용함으로써 BiRNN 기법이 결측 구간이 길어질수록 보간 성능이 기존 방법보다 우수한 것으로 판단된다.