• Title/Summary/Keyword: Machine Condition Diagnosis

Search Result 179, Processing Time 0.024 seconds

A Study on Pulse Condition Appeared at Classic with Pulse Condition by Electro Pulse Machine (I) (전자맥진기(電子脈診器)의 맥상(脈狀)과 고전(古典)의 제맥체상(諸脈體狀)에 관한 연구(硏究)(I))

  • Kim, Seog-Ha;Hong, Sub-Hee;Jung, Hyun-Jung;Park, Won-Hwan
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.13 no.1
    • /
    • pp.36-44
    • /
    • 2009
  • Object : Pulse feeling(脈診) belongs to pulse feeling or palpation(切診) of methods of diagnosis in oriental medical terminology. Pulse appears at bio-energy condition of body, so it is a important part of disease diagnosis but we have been trouble in diagnosis by difficulty of pulse feeling(脈診). Methods : We investigate the books about pulse feeling, which are involved "Hwangjenaegyong", "Nangyong", "Maggyeng" etc. Conclusion : According to these, this paper helps you understand pulse feeling(脈診) through comparision and studying pulse condition at clasics with electro pulse machine.

  • PDF

Remote Fault Diagnosis and Maintenance System for NC Machine Tools (공작기계용 원격 고장진단 및 보수 시스템)

  • 신동수;현웅근;정성종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.19-25
    • /
    • 1998
  • Remote fault diagnosis and maintenance system using general telecommunication network is necessary for an effective fault diagnosis and higher productivity of NC machine tools. In order to monitor machine tool condition and diagnose alarm states due to electrical and mechanical faults, a remote data communication system for monitoring of NC machine fault diagnosis and status is developed. The developed system consists of (1) remote communication module among NC's and host PC using PSTN. (2) 8 channels analog data sensing module, (3) digital I/O module for control or NC machine, (4) communication module between NC machine and remote data communication system via RS-232C, and (5) software man-machine interface. Diagnostic monitoring results generated through a successive type inference engine are displayed in user-friendly graphics. The validity and reliability of the developed system is verified to be a powerful commercial version on a vertical machining center through a series of experiments.

  • PDF

Development of Condition Monitoring and Diagnosis System for Rotating Machinery (회전기계의 상태감시 및 진단 시스템 개발)

  • 함종석;이종원;박성호;양보석;황원우;최연선;전오성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.950-955
    • /
    • 2003
  • This paper introduces an enhanced condition monitoring and diagnosis system recently developed for rotating machinery. In the system, the data aquisition/monitoring signal processing, machine condition classifier, case-based reasoning and demonstration modules are effectively integrated with user-friendliness so that machine operators can easily monitor and diagnose the status of rotating machinery in operation. Some of the new features include the directional spectrum, case-based reasoning and neural network techniques. And the demonstrator modules for fault diagnosis of a Bear driving system and for basic understanding of the rotor dynamics are provided to help the potential users better understand the system.

  • PDF

Development of Vibration Diagnosis System for Rotating Machine (회전기계의 이상진동진단 시스템의 개발)

  • 양보석;장우교;김호종
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.325-332
    • /
    • 1996
  • One of the greatest shortcoming in today's predictive maintenance program is the ability to diagnose the mechanical and electrical problems within the machine when the vibration exceeds preset overall and spectral alarm levels. In this study, auto-diagnosis system is constructed by using A/D converter to convert analog to digital singal. With this device the system analyses input signal to diagonosis machine condition. Many plots, which display machine condition, and input values of every channel are calculated in this system. If the falut is found, the system diagnoses automatically using fuzzy algorithm and trend monitoring. Prediction is also performed by the grey system theory. Operator finds out eh machine operating condition intuitively based on with personal computer CRT in using this system.

  • PDF

A Study on an Internet-based Remote Diagnosis System for Machine Tool Failures (인터넷 기반의 공작기계 고장 원격 진단시스템에 관한 연구)

  • Kang, Dae-Chon;Kang, Mu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.75-81
    • /
    • 1999
  • In order to remain competitive, a manufacturing company needs to maintain the optimal condition of its manufacturing system. Machine tools as an important element of a manufacturing system consist of complex mechanical as well as electronic components. Therefore, diagnosing the troubles of machine tools is a tricky process which requires a lot of experience and knowledge. Since providing machine tool users with necessary services at the right time is very difficult and expensive, a remote diagnosis system is to be regarded as a good alternative, with which users can diagnose and fix the machine troubles. This paper presents a framework for a remote machine tools diagnosis system by combining the world wide web technology and backward reasoning expert system.

  • PDF

Development of Intelligent System for Moving Condition Diagnosis of the Machine Driving System (기계구동계의 작동상태 진단을 위한 지능형 시스템의 개발)

  • 박흥식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.42-49
    • /
    • 1998
  • This wear debris can be harvested from the lubricants of operating machinery and its morphology is directly related to the damage to the interacting surface from which the particles originated. The morphological identification of wear debris can therefore provide very early detection of a fault and can also often facilitate a diagnosis. The purpose of this study is to attempt the developement of intelligent system for moving condition diagnosis of the machine driving system. The four shape parameter(50% volumetric diameter, aspect, roundness and reflectivity) of war debris are used as inputs to the neural network and learned the moving condition of five values(material3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameter learned. The three kinds of the wear debris had a different pattern characteristics and recognized the moving condition and materials very well by neural network.

Rejection Study of Mearest Meighbor Classifier for Diagnosis of Rotating Machine Fault (회전기계 고장 진단을 위한 최근접 이웃 분류기의 기각 전략)

  • 최영일;박광호;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.81-84
    • /
    • 2000
  • Rotating machine is used extensively and plays important roles in the industrial field. Therefore when rotating machine get out of order, it is necessary to know reasons then deal with the troubles immediately. So many studies far diagnosis of rotating machine are being done. However by this time most of study has an interest in gaining a high recognition But without considering error $rate^{(1)(2)(3)}$ , it is not desirable enough to apply h the actual application system. If the manager of system receives the result misjudging the condition of rotating machine and takes measures, we would lose heavily. So in order to play the creditable diagnosis, we must consider error rate. T h ~ t is. it must be able to reject the result of misjudgment. This study uses nearest neighbor classifier for diagnosis of rotating $machine^{(4)(8)}$ And the Smith's rejection $method^{(1)}$ used to recognize handwritten charter is done. Consequently creditable diagnosis of rotating machine is proposed.

  • PDF

Fault Diagnosis of Rotating Machinery Using Multi-class Support Vector Machines (Multi-class SVM을 이용한 회전기계의 결함 진단)

  • Hwang, Won-Woo;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1233-1240
    • /
    • 2004
  • Condition monitoring and fault diagnosis of machines are gaining importance in the industry because of the need to increase reliability and to decrease possible loss of production due to machine breakdown. By comparing the nitration signals of a machine running in normal and faulty conditions, detection of faults like mass unbalance, shaft misalignment and bearing defects is possible. This paper presents a novel approach for applying the fault diagnosis of rotating machinery. To detect multiple faults in rotating machinery, a feature selection method and support vector machine (SVM) based multi-class classifier are constructed and used in the faults diagnosis. The results in experiments prove that fault types can be diagnosed by the above method.

Machine Fault Diagnosis and Prognosis: The State of The Art

  • Tung, Tran Van;Yang, Bo-Suk
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.61-71
    • /
    • 2009
  • Machine fault diagnostic and prognostic techniques have been the considerable subjects of condition-based maintenance system in the recent time due to the potential advantages that could be gained from reducing downtime, decreasing maintenance costs, and increasing machine availability. For the past few years, research on machine fault diagnosis and prognosis has been developing rapidly. These publications covered in the wide range of statistical approaches to model-based approaches. With the aim of synthesizing and providing the information of these researches for researcher's community, this paper attempts to summarize and classify the recent published techniques in diagnosis and prognosis of rotating machinery. Furthermore, it also discusses the opportunities as well as the challenges for conducting advance research in the field of machine prognosis.

A Predictive System for Equipment Fault Diagnosis based on Machine Learning in Smart Factory (스마트 팩토리에서 머신 러닝 기반 설비 장애진단 예측 시스템)

  • Chow, Jaehyung;Lee, Jaeoh
    • KNOM Review
    • /
    • v.24 no.1
    • /
    • pp.13-19
    • /
    • 2021
  • In recent, there is research to maximize production by preventing failures/accidents in advance through fault diagnosis/prediction and factory automation in the industrial field. Cloud technology for accumulating a large amount of data, big data technology for data processing, and Artificial Intelligence(AI) technology for easy data analysis are promising candidate technologies for accomplishing this. Also, recently, due to the development of fault diagnosis/prediction, the equipment maintenance method is also developing from Time Based Maintenance(TBM), being a method of regularly maintaining equipment, to the TBM of combining Condition Based Maintenance(CBM), being a method of maintenance according to the condition of the equipment. For CBM-based maintenance, it is necessary to define and analyze the condition of the facility. Therefore, we propose a machine learning-based system and data model for diagnosing the fault in this paper. And based on this, we will present a case of predicting the fault occurrence in advance.