• Title/Summary/Keyword: Mach Number

Search Result 677, Processing Time 0.027 seconds

Measurement of Aerodynamic Heating over a Protuberance in Hypersonic Flow of Mach 7 (Mach 7 극초음속 유동 내의 돌출물 공력가열 계측)

  • Lee, Hyoung-Jin;Lee, Bok-Jik;Jeung, In-Seuck;Kim, Seong-Lyong;Kim, In-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.562-570
    • /
    • 2009
  • An Experimental study was conducted on the flow characteristics and interference heating caused by a two-dimensional object protruding from a flat plate using a blow-down type of hypersonic wind tunnel. Inflow condition was a free-stream Mach number of 7.0 and a unit Reynolds number of $2.0{\times}10^6/m$. Experimental conditions were varied with three heights of protuberance for two flat plate models which have different lengths. Experimental data were obtained from Schlieren visualization images and heat flux measurements. Also, this paper suggests hypersonic experimental techniques such as boundary-layer detection method in detail. A Large separation region was observed in front of the protuberance and that region was very sensitive to the height of protuberance and the length of the flat plate. For only the highest protuberance, a severe jump of heat flux was observed at the top station among the measuring points. Measured heat flux is large when the height of protuberance is large and the length of flat plate is long.

Characteristics on Combustion Mode in Dual Mode Scramjet Engine (이중모드 스크램제트 엔진의 연소모드 특성)

  • Namkoung, HyuckJoon;Shim, ChangYeul;Kim, SunYong;Lee, MinSoo;Park, JooHyon;Kim, DongHwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.330-335
    • /
    • 2017
  • Recently many studies have been made for the development of propulsion system with wide range flight from supersonic to hypersonic. Dual Mode scramjet engine as a hybrid cycle with advantage of ramjet and scramjet has one combustor. It works under the ramjet mode (subsonic combustion) and scramjet mode (supersonic combustion) respectively. In this study, Experimental results of hot firing tests of dual scramjet engine designed on the condition of Mach 3.5~6 as a flight Mach number are discussed. The tests were carried out on a ground test bench under free stream condition of Mach 6 at 27.6km altitude. In the tests, the adopted design and technological solutions were verified and efficient operation of the dual mode ramjet engine with Kerosene combustion during 5 seconds was demonstrated.

  • PDF

A Study of the Compound Choking Phenomenon in Gas Flows (기체유동에서 발생하는 복합초킹 현상에 관한 연구)

  • Lee, Jun-Hee;Baek, Seung-Cheol;Choi, Bo-Gyu;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • Compound choking frequently occurs at a minimum area of the flow passage, where two or more streams which have different stagnation properties are merged. This phenomenon is especially important in that the flow choking may not be given by Mach number, M=1 at the nozzle throat. In order to obtain a detailed understanding of the flow characteristics involved in the compound flow choking, the two-dimensional, compressible, Wavier-Stokes equations are solved using a fully implicit finite volume method and the predicted solutions are compared with the results of the one-dimensional theoretical analysis. Stagnation pressure and temperature of each stream are changed to investigate the effects on the compound choking. The results show that stagnation pressures of each stream affect Mach number and static pressure distributions downstream of the exit of the convergent nozzle. However, the flow characteristics of the compound choking are not significantly dependent on the total temperature ratio.

A Study of the Twin Impulse Wave Discharged from the Exit of Two Parallel Tubes (두 평행한 관의 출구로부터 방출되는 트윈파에 관한 연구)

  • Kang, Sung-hwang;Kim, Jae-Ho;Kim, Heuy-dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.962-967
    • /
    • 2005
  • The twin-impulse wave discharged from two parallel tubes is investigated to see flow patterns, compared with the single impulse wave. In the present study, the merging phenomena and propagation characteristics of the impulse waves are investigated by experiment and numerical computation. The Harten-Yee's total variation diminishing scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The Mach number Ms of incident shock wave is lower than 1.5 and the distance between the tubes is between 1.2 and 4.0. In the shock tube experiment, the twin impulse waves are visualized by a Schlieren optical system in order to validate the computational result. It is shown that on the symmetric axis between two parallel tubes, the peak pressure produced by the twin impulse waves and its location strongly depend upon the tube distance and the incident shock Mach number, Ms. The predicted Schlieren images show a good agreement with the measured twin-impulse wave.

Gas Effect at High Temperature on the Supersonic Nozzle Conception

  • Boun-jad, Mohamed;Zebbiche, Toufik;Allali, Abderrazak
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.82-90
    • /
    • 2017
  • The aim of this work is to develop a new computational program to determine the effect of using the gas of propulsion of combustion chamber at high temperature on the shape of the two-dimensional Minimum Length Nozzle giving a uniform and parallel flow at the exit section using the method of characteristics. The selected gases are $H_2$, $O_2$, $N_2$, CO, $CO_2$, $H_2O$, $NH_3$, $CH_4$ and air. All design parameters depend on the stagnation temperature, the exit Mach number and the used gas. The specific heat at constant pressure varies with the temperature and the selected gas. The gas is still considered as perfect. It is calorically imperfect and thermally perfect below the threshold of dissociation of molecules. A error calculation between the parameters of different gases with air is done in this case for purposes of comparison. Endless forms of nozzles may be found based on the choise of $T_0$, $M_E$ and the selected gas. For nozzles delivering same exit Mach number with the same stagnation temperature, we can choose the right gas for aerospace manufacturing rockets, missiles and supersonic aircraft and for supersonic blowers as needed in settings conception.

Temperature Measurement Using Single-Mode Fiber Interferometric Sensor (단일모드 광섬유의 간섭계 센서를 이용한 온도측정)

  • 김덕수;이상호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In this paper, temperature-induced optical phase shifts in single-mode fibers are studied both analytically and experimentally. Temperature sensor using single-mode fiber interferometer is designed and the temperature sensitivity of the sensor system is investigated. This fiber-optic temperature sensor which employs the Mach-Zehnder arrangement is a high sensitivity sensor of phase detection type. In this type, temperature changes are ob-served as a motion of an optical interference fringe pattern. In the measurements using interferometer, one of the important problems is to detect simultaneously the number and direction of fringe displacement resulting from physical perturbations (temperature, pressure, etc.). To realize this, the array detector using multi-mode fiber is designed. By this array detector the number and direction of fringe displacement is Ineasured very conveniently.

  • PDF

Numerical Study on Effects of Splitter Chord Length and Pitchwise Location on the Flow Characteristics in a Transonic Centrifugal Compressor (스플리터의 코드길이와 피치방향 위치가 천음속 원심압축기의 유동 특성에 미치는 영향에 대한 전산해석적 연구)

  • Lee, Byung Ju;Kim, Dae Hyun;Chung, Jin Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.5-11
    • /
    • 2016
  • The purpose of this study is to design the transonic centrifugal compressor impeller with splitter blades and analyze the flow fields with respect to various splitter blades. Seven impellers with different splitter chord length or pitchwise location were tested by using CFD method. To investigate aerodynamic performance, Mach number distribution and entropy distribution were confirmed. As a result, it is found that the size of transonic region and shock wave location are related to the splitter chord length and pitchwise location. Also the impeller with long chord length of splitter shows higher total pressure ratio but lower efficiency than those of the impeller with short chord length of splitter. In terms of pitchwise location, the impeller with the splitter located in mid-pitch of main blades shows the best performance with respect to pressure ratio and efficiency.

Transitional Behavior of a Supersonic Flow in a Two-dimensional Diffuser

  • Kim, Sehoon;Kim, Hyungjun;Sejin Kwon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1816-1821
    • /
    • 2001
  • Two-dimensional blow-down type supersonic wind tunnel was designed and built to investigate the transient behavior of the startup of a supersonic flow from rest. The contour of the divergent part of the nozzle was determined by the MOC calculation. The converging part of the nozzle, upstream of fille throat was contoured to make the flow uniform at the throat. The flow characteristics of the steady supersonic condition were visualized using the high-speed schlieren photography. The Mach number was evaluated from the oblique shock wave angle on a sharp wedge with halt angle of 5 degree. The measured Mach number was 2.4 and was slightly less than the value predicted by the design calculation. The initial transient behavior of the nozzle was recorded by a high-speed digital video camera with schlieren technique. The measured transition time from standstill to a steady supersonic flow was estimated by analyzing the serial images. Typical transition time was approximately 0.1sec.

  • PDF

Study of the Impulse Wave Impinging upon an Inclined Flat Plate (경사판에 충돌하는 펄스파에 관한 연구)

  • Kweon, Y.H.;Lee, D.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.438-443
    • /
    • 2001
  • Plate impingement of the impulse wave discharged from the open end of a duct is numerically investigated using a CFD method. Harten-Yee Total Variation Diminishing method is used to solve the unsteady, compressible flow governing equations. The Mach number, the flat plate inclination and the distance between the duct exit and inclined flat plate are changed to investigate their effects on the impinging flow field. The impulse wave impingement on the inclined flat plate depends on Mach number $M_s$ and the plate inclination $\psi$. The pressure distributions on the inclined flat plate show that for a small r/D, the peak pressure at the center of an inclined flat plate decreases with an increase in the plate inclination $\psi$ in the range of $\psi$ from $45^{\circ}$ to $60^{\circ}$ but for a large r/D, the peak pressure decreases with an increase in $\psi$ in the range of $\psi$ from $75^{\circ}$ to $90^{\circ}$. It is also found that for all of r/D, the peak pressure at the center of an inclined flat plate has a maximum value in $\psi=90^{\circ}$.

  • PDF