• 제목/요약/키워드: MWCNTs

검색결과 204건 처리시간 0.02초

화학적으로 기능화된 탄소나노튜브를 사용한 고분자 복합재료의 제조 및 물성 평가에 대한 연구 (Manufacturing/Material Property Characterization of Polymer Nano-composites with Chemically Functionalized Carbon Nanotubes)

  • 김태구;곽정춘;이내성;이종휘;박주혁
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1534-1540
    • /
    • 2004
  • This study aims to obtain fundamental understandings involving the manufacturing processes of nano-composites with chemically surface-modified multi-walled carbon nanotubes(MWCNTs), and explore the role of functionalized MWCNTs in the epoxy/MWCNT composites. For this purpose, MWCNTs were purified by the thermo-chemical oxidation process, and incorporated into an epoxy matrix by in situ polymerization process, the surface of MWCNTs were functionalized with carboxyl functions which were demonstrated by an infrared spectroscopy. The mechanical properties of epoxy/MWCNT nano-composites were measured to investigate the role of a chemically functionalized carbon nanotubes. To improve the dispersion quality of MWCNTs in the epoxy matrix, methanol and acetone were exploited as dispersion media with sonification. The epoxy/MWCNT nano-composites with 1 or 2 wt.% addition of functionalized carbon nanotubes show an improved tensile strength and wear resistance in comparison with pure epoxy, which shows the mechanical load transfer improves through chemical bonds between epoxy and functionalized MWCNTs. The tensile strength with 7 wt.% functionalized MWCNTs increases by 28% and the wear resistance is dramatically improved by 100 times.

Mechanical and thermal properties of MWCNT-reinforced epoxy nanocomposites by vacuum assisted resin transfer molding

  • Lee, Si-Eun;Cho, Seho;Lee, Young-Seak
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.32-37
    • /
    • 2014
  • Multi-walled carbon nanotube (MWCNT)/epoxy composites are prepared by a vacuum assisted resin transfer molding (VARTM) method. The mechanical properties, fracture surface morphologies, and thermal stabilities of these nanocomposites are evaluated for epoxy resins with various amounts of MWCNTs. Composites consisting of different amounts of MWCNTs displayed an increase of the work of adhesion between the MWCNTs and the matrix, which improved both the tensile and impact strengths of the composites. The tensile and impact strengths of the MWCNT/epoxy composite improved by 59 and 562% with 0.3 phr of MWCNTs, respectively, compared to the epoxy composite without MWCNTs. Thermal stability of the 0.3 phr MWCNT/epoxy composite increased compared to other epoxy composites with MWCNTs. The enhancement of the mechanical and thermal properties of the MWCNT/epoxy nanocomposites is attributed to improved dispersibility and strong interfacial interaction between the MWCNTs and the epoxy in the composites prepared by VARTM.

Development of Carbon Nanotube-copper Hybrid Powder as Conductive Additive

  • Lee, Minjae;Ha, Seoungjun;Lee, Yeonjoo;Jang, Haneul;Choi, Hyunjoo
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.291-295
    • /
    • 2018
  • A conductive additive is prepared by dispersing multi-walled carbon nanotubes (MWCNTs) on Cu powder by mechanical milling and is distributed in epoxy to enhance its electrical conductivity. During milling, the MWCNTs are dispersed and partially embedded on the surface of the Cu powder to provide electrically conductive pathways within the epoxy-based composite. The degree of dispersion of the MWCNTs is controlled by varying the milling medium and the milling time. The MWCNTs are found to be more homogeneously dispersed when solvents (particularly, non-polar solvent, i.e., NMP) are used. MWCNTs gradually disperse on the surface of Cu powder because of the plastic deformation of the ductile Cu powder. However, long-time milling is found to destroy the molecular structure of MWCNTs, instead of effectively dispersing the MWCNTs more uniformly. Thus, the epoxy composite film fabricated in this study exhibits a higher electrical conductivity than 1.1 S/cm.

X-ray Photoelectron Spectroscopy Study of Cobalt Supported Multi-walled Carbon Nanotubes Prepared by Different Precursors

  • Lee, Jeong-Min;Kim, Ju-Wan;Lim, Ji-Sun;Kim, Tae-Jin;Kim, Shin-Dong;Park, Soo-Jin;Lee, Young-Seak
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.120-126
    • /
    • 2007
  • The effect of cobalt precursor on the structure of Co supported multi-walled carbon nanotubes (MWCNTs) were studied by using X-ray photoelectron spectroscopy (XPS). MWCNTs were treated with a mixture of nitric and sulfuric acids and decorated with cobalt and/or cobalt oxides via aqueous impregnation solutions of cobalt nitrate or cobalt acetate followed by reduction in hydrogen. XPS was mainly used to investigate the phase of cobalt on MWCNTs after reduction with $H_2$ flow at $400^{\circ}C$ for 2 h. Higher cobalt-nanoparticle dispersion was found in the MWCNTS prepared via cobalt nitrate decomposition. A typical XPS spectrum of Co 2p showed the peaks at binding energy (BE) values equal to 781 and 797 eV, respectively. It is found that cobalt nitrate supported MWCNTs is more dispersive and have catalytic activity than that of cobalt acetate supported MWCNTs at same preparation condition such as concentration of precursor solution and reduction environment.

전기방사법을 이용한 PCL/MWCNTs 나노섬유 제조 (Fabrication of PCL/MWCNTs Nanofiber by Electrospinning)

  • 최정미;장현철;현재영;석중현
    • 대한금속재료학회지
    • /
    • 제50권10호
    • /
    • pp.763-768
    • /
    • 2012
  • The uniform and highly smooth nanofibers of biocompatible poly(${\varepsilon}$-caprolactone) (PCL) composited with different contents of multiwalled carbon nanotubes (MWCNTs) were successfully prepared by electrospinning. Experimental parameters were MWCNTs addition to a PCL solution and applied voltages. The topographical features of the composite nanofibers were characterized by scanning electron microscopy and its electrical properties were measured by a four-point probe method. The surface resistance gradually decreased with an increasing content of MWCNTs in PCL fibers because of the excellent electrical conductivity of MWCNTs. The nanofiber diameter could be regulated by varying the solution viscosity and voltages. Our results establish that this kind of electrospinning PCL/MWCNTs nanofibers with the control of fiber diameter and electrical conductivity may be a promising candidate for the application of scaffolds in tissue engineering.

Synthesis of well-aligned thin multiwalled carbon nanotubes on the silicon substrate and their field emission properties

  • Yuan, Huajun;Shin, Dong-Hoon;Kim, Bawl;Lee, Cheol-Jin
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.218-222
    • /
    • 2011
  • Well-aligned multi-walled carbon nanotubes (MWCNTs) were successfully synthesized by catalytic chemical vapor deposition using a hydrogen sulfide ($H_2S$) additive onto Al/Fe thin film deposited on Si wafers. Transmission electron microscopy images indicated that the as-grown carbon products were thin MWCNTs with small outer diameters of less than 10 nm. $H_2S$ plays a key role in synthesizing thin MWCNTs with a large inside hollow core. The well-aligned thin MWCNTs showed a low turn-on voltage of about 1.1 V/${\mu}m$ at a current density of 0.1 ${\mu}A/cm^2$ and a high emission current of about 1.0 mA/$cm^2$ at a bias field of 2.3 V/${\mu}m$. We suggest a possible growth mechanism for the well-aligned thin MWCNTs with a large inside hollow core.

C60@MWCNT: Room Temperature Encapsulation of C60 into Multiwall Carbon Nanotubes

  • Gupta, Vinay;Bahl, Om P.;Mathur, Rakesh B.
    • Carbon letters
    • /
    • 제11권1호
    • /
    • pp.9-12
    • /
    • 2010
  • The synthesis of $C_{60}$@MWCNT was carried out at room temperature (${\sim}25^{\circ}C$) from arc-discharge prepared Multi-wall carbon nanotubes (MWCNTs). They were oxidized and acid treated for tube opening. Then $C_{60}$ molecules were encapsulated into MWCNTs by wetting them with $C_{60}$-toluene solution for several minutes followed by ultrasonification. $C_{60}$@MWCNT was cleaned by pure toluene to remove any excess $C_{60}$. $C_{60}$@MWCNT was characterized by electron microscopy, which showed large scale filling of $C_{60}$ into MWCNTs. It was observed that the mechanism of insertion of $C_{60}$ into MWCNTs may be due to the capillary suction at the opening ends of MWCNTs.

Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites

  • Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • 제13권1호
    • /
    • pp.51-55
    • /
    • 2012
  • In this work, expanded graphite (EG)-reinforced poly(ethylene terephthalate) (PET) nanocomposites were prepared by the melt mixing method and the content of the EG was fixed as 2 wt%. The effect of multi-walled carbon nanotubes (MWCNTs) as a co-carbon filler on the electrical and mechanical properties of the EG/PET was investigated. The results showed that the electrical and mechanical properties of the EG/PET were significantly increased with the addition of MWCNTs, showing an improvement over those of PET prepared with EG alone. This was most likely caused by the interconnections in the MWCNTs between the EG layers in the PET matrix. It was found that the addition of the MWCNTs into EG/PET led to dense conductive networks for easy electron transfers, indicating a bridge effect of the MWCNTs.

Electrical characteristics of multi-walled carbon nanotube-polyethylene composites by catalyst and gas control

  • Park, Suyoung;Choi, Sun-Woo;Jin, Changhyun
    • Journal of Ceramic Processing Research
    • /
    • 제20권5호
    • /
    • pp.464-469
    • /
    • 2019
  • In this study, the electrical conductivity of multi-walled carbon nanotubes (MWCNTs) and polyethylene synthesized by an extrusion process was evaluated. The MWCNTs used exhibited differences in their dispersion characteristics depending on the type of catalyst or synthesis gas used. Thus, the choice of catalyst or synthesis gas significantly affect the physicochemical state of the final MWCNTs and MWCNT-based composites. In this investigation, the characteristics of MWCNTs were analyzed in four cases by introducing ethylene and propylene gas to each catalyst synthesized using deposition precipitation and spray drying methods. The MWCNT-based composites synthesized using the catalyst prepared by deposition precipitation and the ethylene synthesis gas showed the best electrical conductivity. In principle, the morphologies of the MWCNTs indicate that the smaller the aggregate size and bundle thickness, the better the electrical conductivity of the MWCNT composites. This implies that the network is well-formed.

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Ha, Sung-Jin;Rajadurai, Rajagopalan Sam;Kang, Su-Tae
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.439-450
    • /
    • 2021
  • In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.