Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.1.032

Mechanical and thermal properties of MWCNT-reinforced epoxy nanocomposites by vacuum assisted resin transfer molding  

Lee, Si-Eun (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Cho, Seho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Carbon letters / v.15, no.1, 2014 , pp. 32-37 More about this Journal
Abstract
Multi-walled carbon nanotube (MWCNT)/epoxy composites are prepared by a vacuum assisted resin transfer molding (VARTM) method. The mechanical properties, fracture surface morphologies, and thermal stabilities of these nanocomposites are evaluated for epoxy resins with various amounts of MWCNTs. Composites consisting of different amounts of MWCNTs displayed an increase of the work of adhesion between the MWCNTs and the matrix, which improved both the tensile and impact strengths of the composites. The tensile and impact strengths of the MWCNT/epoxy composite improved by 59 and 562% with 0.3 phr of MWCNTs, respectively, compared to the epoxy composite without MWCNTs. Thermal stability of the 0.3 phr MWCNT/epoxy composite increased compared to other epoxy composites with MWCNTs. The enhancement of the mechanical and thermal properties of the MWCNT/epoxy nanocomposites is attributed to improved dispersibility and strong interfacial interaction between the MWCNTs and the epoxy in the composites prepared by VARTM.
Keywords
multi-walled carbon nanotubes; mechanical properties; fracture; epoxy; vacuum assisted resin transfer molding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hsiao KT, Gillespie JJW, Fink BK, Mathur R, Advani SG. A closed form solution for flow during the vacuum assisted resin transfer molding process. J Manuf Sci Eng, 122, 463 (1999). http://dx.doi.org/10.1115/1.1285907.
2 Chen ZK, Yang JP, Ni QQ, Fu SY, Huang YG. Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer, 50, 4753 (2009). http://dx.doi.org/10.1016/j.polymer.2009.08.001.   DOI   ScienceOn
3 Nieu NH, Tan TTM, Huong NL. Epoxy-phenol-cardanol-formaldehyde systems: thermogravimetry analysis and their carbon fiber composites. J Appl Polym Sci, 61, 2259 (1996). http://dx.doi.org/10.1002/(SICI)1097-4628(19960926)61:13<2259::AIDAPP3>3.0.CO;2-B.   DOI
4 Saito S, Sasabe H, Nakajima T, Yada K. Dielectric relaxation and electrical conduction of polymers as a function of pressure and temperature. J Polym Sci A-2, 6, 1297 (1968). http://dx.doi.org/10.1002/pol.1968.160060708.   DOI
5 Gojny FH, Schulte K. Functionalisation effect on the thermomechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Composites Sci Technol, 64, 2303 (2004). http://dx.doi.org/10.1016/j.compscitech.2004.01.024.   DOI   ScienceOn
6 Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AM, Lozano K, Barrera EV. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater, 14, 643 (2004). http://dx.doi.org/10.1002/adfm.200305162.   DOI   ScienceOn
7 Hsiao KT, Devillard M, Advani SG. Simulation based flow distribution network optimization for vacuum assisted resin transfer moulding process. Modell Simul Mater Sci Eng, 12, S175 (2004). http://dx.doi.org/10.1088/0965-0393/12/3/S08.   DOI   ScienceOn
8 Oh JH, Lee DG. Cure cycle for thick glass/epoxy composite laminates. J Compos Mater, 36, 19 (2002). http://dx.doi.org/10.1177/0021998302036001300.   DOI
9 Zhou Y, Pervin F, Lewis L, Jeelani S. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater Sci Eng A, 452-453, 657 (2007). http://dx.doi.org/10.1016/j.msea.2006.11.066.   DOI   ScienceOn
10 Thostenson ET, Li C, Chou TW. Nanocomposites in context. Composites Sci Technol, 65, 491 (2005). http://dx.doi.org/10.1016/j.compscitech.2004.11.003.   DOI   ScienceOn
11 Thostenson ET, Chou TW. Aligned multi-walled carbon nanotubereinforced composites: processing and mechanical characterization. J Phys D, 35, L77 (2002). http://dx.doi.org/10.1088/0022-3727/35/16/103.   DOI   ScienceOn
12 Lanticse LJ, Tanabe Y, Matsui K, Kaburagi Y, Suda K, Hoteida M, Endo M, Yasuda E. Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites. Carbon, 44, 3078 (2006). http://dx.doi.org/10.1016/j.carbon.2006.05.008.   DOI   ScienceOn
13 Basara C, Yilmazer U, Bayram G. Synthesis and characterization of epoxy based nanocomposites. J Appl Polym Sci, 98, 1081 (2005). http://dx.doi.org/10.1002/app.22242.   DOI   ScienceOn
14 Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos, 25, 630 (2004). http://dx.doi.org/10.1002/pc.20058.   DOI   ScienceOn
15 Ma PC, Kim JK, Tang BZ. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Sci Technol, 67, 2965 (2007). http://dx.doi.org/10.1016/j.compscitech.2007.05.006.   DOI   ScienceOn
16 Chen Q, Dai L, Gao M, Huang S, Mau A. Plasma activation of carbon nanotubes for chemical modification. J Phys Chem B, 105, 618 (2000). http://dx.doi.org/10.1021/jp003385g.   DOI   ScienceOn
17 Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon, 44, 1624 (2006). http://dx.doi.org/10.1016/j.carbon.2006.02.038.   DOI   ScienceOn
18 Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928.   DOI   ScienceOn
19 Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R, 49, 89 (2005). http://dx.doi.org/10.1016/j.mser.2005.04.002.   DOI   ScienceOn
20 Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc Chem Res, 35, 1096 (2002). http://dx.doi.org/10.1021/ar010160v.   DOI   ScienceOn
21 Kim JA, Seong DG, Kang TJ, Youn JR. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 44, 1898 (2006). http://dx.doi.org/10.1016/j.carbon.2006.02.026.   DOI   ScienceOn
22 Rodgers RM, Mahfuz H, Rangari VK, Chisholm N, Jeelani S. Infusion of SiC nanoparticles into SC-15 epoxy: an investigation of thermal and mechanical response. Macromol Mater Eng, 290, 423 (2005). http://dx.doi.org/10.1002/mame.200400202.   DOI   ScienceOn
23 Kawaguchi T, Pearson RA. The effect of particle-matrix adhesion on the mechanical behavior of glass filled epoxies. Part 2. A study on fracture toughness. Polymer, 44, 4239 (2003). http://dx.doi.org/10.1016/S0032-3861(03)00372-0.   DOI   ScienceOn
24 Mahfuz H, Adnan A, Rangari VK, Jeelani S, Jang BZ. Carbon nanoparticles/whiskers reinforced composites and their tensile response. Composites A, 35, 519 (2004). http://dx.doi.org/10.1016/j.compositesa.2004.02.002.   DOI
25 Evora VMF, Shukla A. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Mater Sci Eng A, 361, 358 (2003). http://dx.doi.org/10.1016/S0921-5093(03)00536-7.   DOI
26 Gabr MH, Elrahman MA, Okubo K, Fujii T. Effect of microfibrillated cellulose on mechanical properties of plain-woven CFRP reinforced epoxy. Compos Struct, 92, 1999 (2010). http://dx.doi.org/10.1016/j.compstruct.2009.12.009.   DOI   ScienceOn
27 Bagheri R, Pearson RA. Role of particle cavitation in rubbertoughened epoxies: II. Inter-particle distance. Polymer, 41, 269 (2000). http://dx.doi.org/10.1016/S0032-3861(99)00126-3.   DOI
28 Liao YH, Marietta-Tondin O, Liang Z, Zhang C, Wang B. Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater Sci Eng A, 385, 175 (2004). http://dx.doi.org/10.1016/j.msea.2004.06.031.   DOI   ScienceOn
29 Pervin F, Zhou Y, Rangari VK, Jeelani S. Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Mater Sci Eng A, 405, 246 (2005). http://dx.doi.org/10.1016/j.msea.2005.06.012   DOI