• Title/Summary/Keyword: MV Cable

Search Result 25, Processing Time 0.027 seconds

PD measuring on MV XLPE Calble by Using UWB Antenna (UWB 안테나를 이용한 MV급 전력케이블의 부분방전 측정 연구)

  • Yang, Sang-Hyun;Lim, Kwang-Jin;Lee, Yong-Sung;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.267-268
    • /
    • 2008
  • This paper presents compact low frequency ultra-wide band(UWB) sensor design and studying of the partial discharge diagnosis by sensing electromagnetic pulse emitted from the partial discharge source with new designed UWB sensor. In this study, we designed new type of compact low frequency UWB sensor based on microstrip antenna technology to detect both low frequency and high frequency band of partial discharge signal. And experiments of offline PD testing on in medium voltage (22.9kV) underground cable and mention the comparative results with the traditional HFCT as a reference sensor in the laboratory. In the series of comparative test, the calibration signal injection test provided with conventional IEC 60270 method and high voltage injection testing are included.

  • PDF

Simulation of Breakdown in XLPE Cable Using FEM (유한요소법을 이용한 XLPE 케이블내의 절연파괴 모의실험)

  • 장인범;김용주;한기만;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.313-316
    • /
    • 1995
  • In this study, in case the lead sheath of XLPE cable (radius : 15cm, inner conductor radius : 5cm, insulation paper raidius : 6cm, dc voltage : 1MV) is harmed, so that breakdown process by inhomogeneous eletric field is simulated with Finite Element Method. The result of simulation showed that defect of lead sheath layer caused breakdown.

  • PDF

Statistical Life Expectancy Calculation of MV Cables and Application Methods (중전압 전선의 통계적 수명예측 계산과 응용 방법)

  • Chong-Eun, Cho;On-You, Lee;Sang-Bong, Kim;Kang-Sik, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • In this paper, the change history of various types of MV (Medium Voltage) cables was investigated. In addition, the statistical life expectancy of each type was calculated by using the operation data and the failure data. For cut-off year, 10 years was applied, and realistically applicable statistical life expectancy was calculated by correcting the cause of failure entered by mistake. The life expectancy of FR-CNCO-W was calculated as 51.2 years, CNCV-W 38.1 years, and CNCV 31.4 years and the overall average is 33.8 years. Currently, the life expectancy of TR CNCV-W is 29.4 years, but it is estimated that the lifespan will be extended if failure data is accumulated. As a result, it is expected that life expectancy results can be applied to Asset Management System (AMS) in the future.

A Study on the DC Critical Current Test Method for 22.9kV/50MV A Superconducting Power Cable Considering the Uncertainty (불확도를 고려한 22.9kV, 50MVA급 초전도 전력케이블의 직류 임계전류 측정방법에 관한 연구)

  • Choi, S.J.;Lee, S.J.;Sim, K.D.;Cho, J.W.;Lee, S.K.;Yang, B.M.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.46-49
    • /
    • 2009
  • A 3-phase 100m long, 22.9kV class HTS power transmission cable system was developed by Korea Electrotechnology Research Institute (KERI) and LS cable Ltd. those are participated in the 21st Century Frontier project R&D Program of Korea. It is important to test the DC critical current related with its power capacity before applying to the real power grid. In 1995, several international standards organizations including International Electrotechnical Commission (IEC), decided to unify the use of statistical terms related with 'accuracy' or 'precision' in their standards. It was decided to use the word 'uncertainty' for all quantitative (associated with a number) statistical expressions. In this paper, we measured DC critical current of 22.9kV/50MVA superconducting power cable with several voltage tap and analyzed the uncertainty with these results.

Chamber-to-chamber Variations in the Same Type of a Cylindrical Chamber for the Measurements of Absorbed Doses (흡수선량 측정 시 동종 원통형 이온함에서 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.120-125
    • /
    • 2010
  • For the measurements of an absorbed dose using the standard dosimetry based on an absorbed dose to water the variety of factors, whether big, small, or tiny, may influence the accuracy of dosimetry. The beam quality correction factor ${\kappa}_{Q,Q_0}$ of an ionization chamber might also be one of them. The cylindrical type of ionization chamber, the PTW30013 chamber, was chosen for this work and 9 chambers of the same type were collected from several institutes where the chamber types are used for the reference dosimetry. They were calibrated from the domestic Secondary Standard Dosimetry Laboratory with the same electrometer and cable. These calibrated chambers were used to measure absorbed doses to water in the reference condition for the photon beam of 6 MV and 10 MV and the electron beam of 12 MeV from Siemens ONCOR. The biggest difference among chambers amounts to 2.4% for the 6 MV photon beam, 0.8% for the 10 MV photon beam, and 2.4% for the 12 MeV electron beam. The big deviation in the photon of 6 MV demonstrates that if there had been no problems with the process of measurements application of the same ${\kappa}_{Q,Q_0}$ to the chambers used in this study might have influenced the deviation in the photon 6 MV and that how important an external audit is.

Korean Institute of Electrical and Electronic Materials (XLPE 전력케이블의 부분방전 측정을 위한 평면 루프 센서 설계에 관한 연구)

  • Lim, Kwang-Jin;Yang, Sang-Hyun;Lwin, Kyaw-Soe;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.27-31
    • /
    • 2008
  • In this study, The new type of loop antenna which detects the partial discharge was designed based on microstrip line technology. In diagnosis of power cable, partial discharge signal generally occurred at the frequency range lower than 100MHz because high frequency PD signals could be lost along the propagation path in the cable. The new type of loop antenna sensor has been studied by using Simulation software named CST microwave studio version 5.0. In partial discharge measuring experiments, commercial HFCT sensor was used as a reference sensor. Several experiments were made over HFCT sensor and loop antenna sensor in detection partial discharge on MV XLPE cable of 22.9kV. In this study, we have shown our loop antenna sensor can apply as a commercial HFCT sensor.

  • PDF

Partial Discharges Detection for MV Cables using Non-conventional Sensors (Non-conventional 센서를 이용한 MV급 전력케이블의 부분방전 측정)

  • Kim, Jong-Yeol;Lee, Young-Jo;Cho, Sung-Joo;Nam, Jung-Hak;Koo, Ja-Yoon;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1604-1605
    • /
    • 2011
  • This paper deals with the partial discharge detection in order to recognize with three different nature of artificial defects using non-conventional HF-VHF PD sensor of which two measuring position are chosen along the 22.9kV XLPE power cable specimen. The response of the sensor under investigation has been observed be significantly affected by the cable length from the PD sources. As a result, it seems that the detecting sensor position is very important for the analysis of the nature of PD source. Moreover, it could be suggested that any standardized calibration method should be established replacing IEC 60270 as far as any type of non-conventional sensors are concerned.

  • PDF

Electric conduction properties of low density Polyethylene film for Power cable (전력케이블용 저밀도폴리에틸렌박막의 전기전도특성)

  • 황종국;홍능표;이용우;소병문;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.143-146
    • /
    • 1994
  • In older to investigate the properties of electric conduction in low density polyethylene(LDPE) for power cable, the thickness of specimen was the 30, 100($\mu\textrm{m}$) of LDPE. The experimental condition for conductive properties was measured until the breakdown occurs at temperature ranges from 30 to 110[$^{\circ}C$] and in the electric field of 1 to 5 ${\times}$10$^2$[Mv/m]. As for increase of temperature, the current density of LDPE was increased with constant ratio in low field, but changes with exponential function in high field. The tunnel current of pre-breakdown region is shifted toward low field as much as thermal excitation energy.

Impedance Characteristics of Overhead Medium-Voltage Power lines for Power Line Communication (전력선통신을 위한 고압 배전선로의 임피던스 특성)

  • Chun Dong-wan;Park Young-jin;Kim Kwan-ho;Shin Chull-chai
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.67-78
    • /
    • 2005
  • In this paper, impedance characteristics of overhead medium-voltage (MV) power line for power line communication (PLC) is analyzed. For analysis, a two-port equivalent network model of MV power lines is derived. By applying the equivalent model and basic transmission line theory, input impedance at the signal induction part is calculated. And also calculated input impedance of power line itself that the medium voltage coupler and coaxial cable effect are removed. For verification, impedance of power lines is measured at a test field for an MV PLC. The results show that impedance of MV power line itself is between $200\;{\Omega}\;and\;300\;{\Omega}$ and converges to a half of their characteristic impedance with increasing frequency. And also measured data is very similar to calculated data.

A Study on the Design of a Planar Loop Sensor for Partial Discharge Diagnosis of 22.9 kV XLPE Power Cables

  • Lim, Kwang-Jin;Yang, Sang-Hyun;Shin, Dong-Hoon;Park, Noh-Joon;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.559-565
    • /
    • 2008
  • This study designed a new type of loop antenna that is able to detect partial discharges based on microstrip line technology. In the diagnosis of power cables, partial discharge signals are generally produced at a frequency range less than 100MHz because high frequency PD signals are lost along a propagation path in such cables. The new type of loop antenna sensor has been studied using simulation software known as CST microwave studio version 5.0. In partial discharge measurement experiments, a commercial HFCT sensor was used as a reference sensor. Several experiments were made over HFCT and loop antenna sensors for detecting partial discharges on 22.9kV MV XLPE cable. In this study, we showed the loop antenna designed in this study that can be applied as a commercial HFCT sensor.