• Title/Summary/Keyword: MUM-T

Search Result 26, Processing Time 0.023 seconds

Strategies for Autonomous MUM-T Defense Industry (자율화 MUM-T 국방산업 전략)

  • Byungwoon Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.56-61
    • /
    • 2023
  • Recently, advancement of AI-enabled autonomous MUM-T combat system and industrial revitalization are rapidly emerging as global issues. However, the Defense Business Act of the Ministry of National Defense in Korea is judged to be somewhat insufficient compared to NATO leading countries in advancement of operation part of a weapon system as MUM-T is centered on a weapon system's own device. We established the concept of AI-enabled autonomous MUM-T to strengthen international competitiveness of complex combat systems such as future global UGV, UAV, and UMS. In addition, NATO and US-centered autonomy, interoperability, and data standardization-based defense AI MUM-T top-level platform construction and operation plan, establishment of a national defense innovation committee such as the National Science and Technology Advisory Council, review and advisory function reinforcement, and additional governance measures are proposed.

Simulation for SEAD Mission with MUM-T (SEAD 임무를 위한 유·무인 협업 모의)

  • Sungbeom Jo;Young Mee Choi;Jihyun Oh;Hyunsam Myung;Heungsik Lim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.409-421
    • /
    • 2023
  • In the air power, UAVs have played a large and diversified role in performing missions from simple to high-level complex ones. In particular, the suppression of enemy air defenses(SEAD) is very dangerous for a pilot so it is expected that the manned-unmanned teaming(MUM-T) system with tailless stealthy unmanned aerial vehicle(UAV) will greatly enhance effectiveness of the mission while ensuring the pilot safe. This paper describes simulation studies of remote airborne control(RAC) environment for performing the SEAD mission by MUM-T, by which the air force pilot remotely controls tailless UAVs individually or small UAVs in swarm. Through this simulation, air force pilot can derive the concept of MUM-T mission operation with various UAVs in the future, and it can be used to upgrade the MUM-T system by verifying the effectiveness of the mission.

Development and Application of Remote Airborne Control Simulator for Experimentation of Manned-Unmanned Teaming of Fixed Wing UAV (고정익 유/무인기의 협업 모의를 위한 원격공중통제 시뮬레이터 개발 및 활용방안)

  • Choi, Young Mee
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • The purpose of this study was to address a Remote Airborne Control Simulator that could simulate manned-unmanned teaming (MUM-T mission) for fixed wing UAV. With rapid technological development of unmanned aerial vehicle (UAV), the mission capability of UAV has tremendously grown. The role of UAV extends from simple reconnaissance to highly automated wingman. Accordingly, the requirement of UAV ground simulator should be modified as well to meet function requirements for simulating a MUM-T mission. A developed remote airborne control simulator was developed for conducting fixed wing UAV MUM-T operation simulations on the ground. The newest MUM-T examples, usage, and application of the developed remote airborne control simulator for MUM-T simulation are also presented in this study.

Transformer-Based MUM-T Situation Awareness: Agent Status Prediction (트랜스포머 기반 MUM-T 상황인식 기술: 에이전트 상태 예측)

  • Jaeuk Baek;Sungwoo Jun;Kwang-Yong Kim;Chang-Eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.436-443
    • /
    • 2023
  • With the advancement of robot intelligence, the concept of man and unmanned teaming (MUM-T) has garnered considerable attention in military research. In this paper, we present a transformer-based architecture for predicting the health status of agents, with the help of multi-head attention mechanism to effectively capture the dynamic interaction between friendly and enemy forces. To this end, we first introduce a framework for generating a dataset of battlefield situations. These situations are simulated on a virtual simulator, allowing for a wide range of scenarios without any restrictions on the number of agents, their missions, or their actions. Then, we define the crucial elements for identifying the battlefield, with a specific emphasis on agents' status. The battlefield data is fed into the transformer architecture, with classification headers on top of the transformer encoding layers to categorize health status of agent. We conduct ablation tests to assess the significance of various factors in determining agents' health status in battlefield scenarios. We conduct 3-Fold corss validation and the experimental results demonstrate that our model achieves a prediction accuracy of over 98%. In addition, the performance of our model are compared with that of other models such as convolutional neural network (CNN) and multi layer perceptron (MLP), and the results establish the superiority of our model.

Analysis of SEAD Mission Procedures for Manned-Unmanned Aerial Vehicles Teaming (유무인기 협업 기반의 SEAD 임무 수행절차 분석)

  • Kim, Jeong-Hun;Seo, Wonik;Choi, Keeyoung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.678-685
    • /
    • 2019
  • Due to the changes in future war environment and the technological development of the aviation weapon system, it is required to carry out on the analysis of the Manned-Unmanned aerial vehicles Teaming(MUM-T). Conventional manned-unmanned aerial vehicles operate according to the air strategy missions and vehicles' performance. In this paper, we analyze conventional aerial vehicle's mission to derive various kinds of missions of MUM-T after analyzing the unmanned aircraft systems roadmap issued by US DoD and the air strategy of US Air Force. Next, we identify the basic operations of the vehicles to carry out the missions, select the MUM-T based Suppression of Enemy Air Defense missions(SEAD), and analyze the procedure for performing the missions step by step. In this paper, we propose a procedure of the mission in the context of physical space and timeline for the realization of the concept of MUM-T.

Evaluation of BCL6 and MUM1 Expression in Patients with Diffuse Large B cell Lymphoma and their Correlations with Staging and Prognosis in Iran

  • Rahimi, Hossein;Jafarian, Amirhossein;Samadi, Alireza;Meamar, Bahram;Rahmani, Shaghayegh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.83-86
    • /
    • 2015
  • Background: Diffuse large B-cell lymphoma (DLBCL) is the most common form of non-Hodgkins lymphoma (NHL), accounting for approximately 25% of NHL cases. The aim of this study was to evaluate the association between the BCL6 and MUM1 gene expression and patient prognosis and stage. Materials and Methods: After ethical approval, in a cross-sectional study, tissue samples of 80 patients with diffuse large B-cell lymphoma were analyzed for BCL6 and MUM1 gene expression. Immunohistochemical staining was performed with division into categories of 0-5%, 5-25%, 26-50%, 51-75% and more than 75%. Other clinical and histological information such as lymph node involvement, T-stage, B symptoms and patient outcome were also recorded. Data were analyzed with SPSS version 16 and a P-value less than 0.05 was considered significant. Results: The patient mean age was $46.9{\pm}10.5$ years ($47.6{\pm}10.7$ and $46.1{\pm}9.6$ for males and females, respectively). A significant association was seen between lymphoma stage and BCL6 (p=0.045) but not MUM1 expression (p=0.09). However, the latter was associated with mortality (p=0.006) as was also the BCL6 level (p=0.006). Conclusions: : Overexpression of MUM1 and BCL6 is associated with poor prognosis in patients with diffuse large B-cell lymphoma.

Deriving Priorities between Autonomous Functions of Unmanned Aircraft using AHP Analysis: Focused on MUM-T for Air to Air Combat (AHP 기법을 이용한 무인기 자율기능 우선순위 도출: 유무인 협업 공대공 교전을 중심으로)

  • Jung, Byungho;Oh, Jihyun;Seol, Hyeonju;Hwang, Seong In
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.1
    • /
    • pp.10-19
    • /
    • 2022
  • Recently, the Defense Advanced Research Projects Agency(DARPA) in the United States is studying a new concept of war called Mosaic Warfare, and MUM-T(Manned-Unmanned Teaming) through the division of missions between expensive manned and inexpensive unmanned aircraft is at the center. This study began with the aim of deriving the priority of autonomous functions according to the role of unmanned aerial vehicles in the present and present collaboration that is emerging along with the concept of mosaic warfare. The autonomous function of unmanned aerial vehicles between the presence and absence collaboration may vary in priority depending on the tactical operation of unmanned aerial vehicles, such as air-to-air, air-to-ground, and surveillance and reconnaissance. In this paper, ACE (Air Combat Evaluation), Skyborg, and Longshot, which are recently studied by DARPA, derive the priority of autonomous functions according to air-to-air collaboration, and use AHP analysis. The results of this study are meaningful in that it is possible to recognize the priorities of autonomous functions necessary for unmanned aircraft in order to develop unmanned aerial vehicles according to the priority of autonomous functions and to construct a roadmap for technology implementation. Furthermore, it is believed that the mass production and utilization of unmanned air vehicles will increase if one unmanned air vehicle platform with only essential functions necessary for air-to-air, air-to-air, and surveillance is developed and autonomous functions are expanded in the form of modules according to the tactical operation concept.

A Development Direction for Scientific Guard Systems Applying 3 Elements of Revolution in Military Affairs (군사혁신 3요소를 적용한 과학화 경계시스템 발전방향)

  • Young-ho Kwon;June-Seung Yoo;Sung-Jun Park;Hyun-Kyu Choi;Sang-Keun Cho;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.249-255
    • /
    • 2023
  • In this study, based on the awareness of the problem of current scientific guard systems of ROKA, We suggested a develoment direction for scientific guard system applying 3 elements of Revolution in Military Affairs by 2035. To this end, we analyzed challenges of current scientific guard systems and reviewed similar cases in other countries. Based on this, We suggested a develoment direction for scientific guard system, comprised of the concept of gurad operation, the organization of guard troops, and MUM-T(manned and unmanned teaming) by applying the framework of 3 elements of military innovation (operation concept, organization, weapon system). In order to overcome challenges at hand, we need a innovative scientific guard systems that applies MUM-T based on high technology along with agile&smart guard troops.

실리카 식각공정 기술동향

  • Park, S.H.;Sung, H.K.;Choi, T.K.
    • Electronics and Telecommunications Trends
    • /
    • v.14 no.1 s.55
    • /
    • pp.13-23
    • /
    • 1999
  • 평면형 광소자 제조공정 중 실리카 식각공정 기술은 일반적으로 잘 알려진 반도체 식각공정 기술과 달리 $8\mum$이상을 식각할 수 있는 높은 식각률과 그에 따른 마스크 물질의 높은 선택비를 필요로 하며, 특히 광 손실을 줄이기 위하여 표면 및 측면의 조도를 줄일 수 있는 공정기술을 필요로 한다. 본 고에서는 $8\mum$이상의 실리카 채널 도파로 형성시 요구되는 식각특성 중 식각률과 식각선택비 및 플라즈마 소스에 대하여 알아보고, 유도결합프라즈마(inductively coupled plasma)를 사용한 실리카막의 식각특성과 최근 진행되고 있는 희토류 첨가 실리카막 식각공정에 대하여 소개한다.

Process for Identifying QoS Requirements in the Multi-Domain Operations Environment (Multi-Domain Operation Environment QoS 소요식별 절차)

  • Park, Dongsuk;Cho, Bongik;Park, Taehyung;Lim, Jaesung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.177-186
    • /
    • 2022
  • A network QoS model for the joint integrated C4I structure was proposed for the integration of network infrastructure and network operations(NetOps) for NCOE. Detailed QoS requirements process of the joint integrated C4I systems are needs in the Multi-Domain Operation Environment(MDOE). A process is proposed for identifying QoS requirements and establishing in the MDOE using JMT(Joint Mission Thread) reference architecture and solution architecture. Mission analysis identify JCOAs(Joint Critical Operational Activities) and related activities based on JMT & System architecture's OVs, and Information analysis identify QoS attributes using System architecture's SVs. Identifying QoS attributes will be registered at PPS Registry by pre-regulated process, and will be set-up by NetOps. MDOE QoS requirement Process will support efficiently MUM-T and smart defense platform users under the future uncertain battlefield circumstances.