• 제목/요약/키워드: MULTI-RADIUS

검색결과 215건 처리시간 0.033초

Effects of curvature radius on vulnerability of curved bridges subjected to near and far-field strong ground motions

  • Naseri, Ali;Roshan, Alireza MirzaGoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • 제7권4호
    • /
    • pp.367-392
    • /
    • 2020
  • The specific characteristics of near-field earthquake records can lead to different dynamic responses of bridges compared to far-field records. However, the effect of near-field strong ground motion has often been neglected in the seismic performance assessment of the bridges. Furthermore, damage to horizontally curved multi-frame RC box-girder bridges in the past earthquakes has intensified the potential of seismic vulnerability of these structures due to their distinctive dynamic behavior. Based on the nonlinear time history analyses in OpenSEES, this article, assesses the effects of near-field versus far-field earthquakes on the seismic performance of horizontally curved multi-frame RC box-girder bridges by accounting the vertical component of the earthquake records. Analytical seismic fragility curves have been derived thru considering uncertainties in the earthquake records, material and geometric properties of bridges. The findings indicate that near-field effects reasonably increase the seismic vulnerability in this bridge sub-class. The results pave the way for future regional risk assessments regarding the importance of either including or excluding near-field effects on the seismic performance of horizontally curved bridges.

기둥을 이용한 다축 힘/모멘트 감지 방법에 관한 연구 (Sensing method of multi-component forces and moments using a column structure)

  • 신홍호;강대임;박연규;김종호;주진원;김옥현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.837-841
    • /
    • 2001
  • The column-type sensing element in building and mechanical construction parts was designed as three forces and three moments sensor by attaching strain gages approximately. Compared to conventional multi-component sensor, the designed sensor can solve the problem about low stiffness and high cost. The radius of the column was designed analytically and compared with finite element analysis. The coupling errors between components were minimized by using addition and subtraction procedure of signals. The fabricated sensor was tested by using a deadweight force standard machine and a six-component force calibration machine in Korea Research Institute of Standards and Science(KRISS). The calibration showed that the multi-component force/moment sensor had coupling error less than 19.8 % between $F_x$ and $M_y$ components, and 9.0 % in case of other components.

  • PDF

환상 형 도관 내의 데토네이션 파 전파 특성 해석 (Numerical Analysis of Detonation Wave Propagation in Annular Channel)

  • 이수한;조덕래;최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.367-370
    • /
    • 2007
  • Present study examines detonation wave propagation characteristics in annular channel. A normalized value of channel width to the annular radius was considered as a geometric parameter. A parametric study was carried out for a various regimes of detonation waves from weakly unstable to highly unstable detonation waves. Numerical approaches that used in the previous study of numerical requirements of the simulation of detonation wave propagations in 2D and 3D channel were used also for the present study with OpenMP parallization for multi-core SMP machines. The major effect of the curved geometry on the detonation wave propagation seems to be a flow compression effect, regardless of the detonation regimes. The flow compression behind the detonation wave by the curved geometry of the circular channel pushes the detonation wave front and results in the overdriven detonation waves with increased detonation speed beyond the Chapmann-Jouguet speed. This effect gets stronger as the normalized radius smaller, as expected. The effect seems to be negligible beyond the normalized radius of 10.

  • PDF

스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구 (The Spinnability of Multi-step Cylindrical Cup in Spinning Process)

  • 박중언;한창수;최석우;김승수;나경환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Efficient Cluster Radius and Transmission Ranges in Corona-based Wireless Sensor Networks

  • Lai, Wei Kuang;Fan, Chung-Shuo;Shieh, Chin-Shiuh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1237-1255
    • /
    • 2014
  • In wireless sensor networks (WSNs), hierarchical clustering is an efficient approach for lower energy consumption and extended network lifetime. In cluster-based multi-hop communications, a cluster head (CH) closer to the sink is loaded heavier than those CHs farther away from the sink. In order to balance the energy consumption among CHs, we development a novel cluster-based routing protocol for corona-structured wireless sensor networks. Based on the relaying traffic of each CH conveys, adequate radius for each corona can be determined through nearly balanced energy depletion analysis, which leads to balanced energy consumption among CHs. Simulation results demonstrate that our clustering approach effectively improves the network lifetime, residual energy and reduces the number of CH rotations in comparison with the MLCRA protocols.

그래핀 공진기 기반의 나노 센서에 대한 연구 (A Study of Nano Sensor based on Graphene Resonator)

  • 이준하
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.102-105
    • /
    • 2017
  • Currently, the size of the electronic device is in the nano area. In order to control the movements of these nanoscale devices, one should be able to understand the physical phenomena in the nano area. Recently, due to carbon nanotubes and mechanical outstanding electrical conductivity and mechanical characteristics of the carbon nanotubes and Graphene behaves to apply. Efforts have been active. There are various tubes with a radius of a in a compact mass in the form of a Multi walled carbon nanotubes in different between the radius. Van der Waals force can move smoothly without friction with each other by the nanoscale motor turning, using the properties, making. This is the lightest solids per unit area on the thickness is electrical atomic layer one of the substance and the electrical conductivity, the best material and mechanical characteristics are very much. Many studies because great is the ideal nanoelectromechanical device of material is being considered. In this study, electrical resonator for a new structure proposed and the nature and methodology would like to come up.

  • PDF

Application of multi-physics simulation for vibration performance of the hand after contacting the ball with the volleyball player

  • Wang, Yangping;Sun, Shuze
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.681-692
    • /
    • 2022
  • The vibrational response of the two bones in a Volleyball player's arm under ball impact is conducted. The two bones in hand, Ulna and Radius, are modeled as two cylindrical shells. The formulations associated with the shells' vibration are obtained using the energy method. Then, the results are extracted with the aid of the two-dimensional form of DQM in conjunction with Runge-Kutta. The results are validated by means of a published paper. Lastly, the role of parameters in determining vibrational frequency as well as deflection is explored through parametric studies. It was shown that the impactor speed and the time of the impact could be essential factors in determining the vibration behavior of the bones. This work can be used in the further investigation of the behavior of bones and physiological structures.

다중벽 탄소 나노튜브가 분산된 Poly(methyl methacrylate) 고분자 용액의 전기방사연구 (Characteristics of Electrospun Poly(methyl methacrylate) Nanofibers Embedding Multi-Walled Carbon Nanotubes(MWNTs))

  • 김동욱;이대회;윤성식;이선애;남재도
    • 폴리머
    • /
    • 제30권1호
    • /
    • pp.90-94
    • /
    • 2006
  • 다중벽 탄소 나노튜브(multi-walled carbon nanotubes, MWNTs)를 포함하고 있는 poly(methyl methacrylate)(PMMA) 나노섬유를 전기 방사법에 의해 제작하였다. 주사 전자 현미경을 통하여 용매의 종류(dimethyl formamide, chloroform and toluene)와 탄소 나노튜브의 함량(0.5 and $3.0\;wt\%$)에 의해 나노섬유 표면의 형상과 탄소 나노튜브와 나노섬유의 구조가 영향을 받았다. 집적판의 전극 모양을 조절함으로써 나노섬유의 정렬이 가능하였다. 고분자 사슬의 회전 반경과 탄소 나노튜브의 크기의 비교를 통하여 PMMA 나노섬유와 탄소 나노튜브의 관계를 정리하였다. 탄소 나노튜브 투입량이 증가함에 따라 고분자 비드가 증가하였다.

Multi-objective optimization of tapered tubes for crashworthiness by surrogate methodologies

  • Asgari, Masoud;Babaee, Alireza;Jamshidi, Mohammadamin
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.427-438
    • /
    • 2018
  • In this paper, the single and multi-objective optimization of thin-walled conical tubes with different types of indentations under axial impact has been investigated using surrogate models called metamodels. The geometry of tapered thin-walled tubes has been studied in order to achieve maximum specific energy absorption (SEA) and minimum peak crushing force (PCF). The height, radius, thickness, tapered angle of the tube, and the radius of indentation have been considered as design variables. Based on the design of experiments (DOE) method, the generated sample points are computed using the explicit finite element code. Different surrogate models including Kriging, Feed Forward Neural Network (FNN), Radial Basis Neural Network (RNN), and Response Surface Modelling (RSM) comprised to evaluate the appropriation of such models. The comparison study between surrogate models and the exploration of indentation shapes have been provided. The obtained results show that the RNN method has the minimum mean squared error (MSE) in training points compared to the other methods. Meanwhile, optimization based on surrogate models with lower values of MSE does not provide optimum results. The RNN method demonstrates a lower crashworthiness performance (with a lower value of 125.7% for SEA and a higher value of 56.8% for PCF) in comparison to RSM with an error order of $10^{-3}$. The SEA values can be increased by 17.6% and PCF values can be decreased by 24.63% by different types of indentation. In a specific geometry, higher SEA and lower PCF require triangular and circular shapes of indentation, respectively.

Strain energy release rates in the curved spar wingskin joints with pre-embedded delaminations

  • P.K. Mishra;A.K. Pradhan;M.K. Pandit ;S.K. Panda
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.47-56
    • /
    • 2023
  • Any pre-existed delamination defect present during manufacturing or induce during service loading conditions in the wingskin adherend invariably shows a greater loss of structural integrity of the spar wingskin joint (SWJ). In the present study, inter-laminar delamination propagation at the critical location of the SWJ has been carried out using contact and multi-point constraint finite elements available with commercial FE software (ANSYS APDL). Strain energy release rates (SERR) based on virtual crack closure technique have been computed for evaluation of the opening (Mode-I), sliding (Mode-II) and cross sliding (Mode-III) modes of delamination by sequential release of multi point constraint elements. The variations of different modes of SERR are observed to be significant by considering varied delamination lengths, material properties of adherends and radius of curvature of the SWJ panel. The SERR rates are seen to be much different at the two pre-embedded delamination ends. This shows dissimilar delamination propagation rates. The maximum is seen to occur in the delamination front in the unstiffened region of the wingskin. The curvature geometry and material anisotropy of SWJ adherends significantly influences the SERR values. Increase in the SERR values are observed with decrease in the radius of curvature of wingskin panel, keeping its width unchanged. SWJs made with flat FRP composite adherends have superior resistance to delamination damage propagation than curved composite laminated SWJ panels. SWJ made with Boron/Epoxy (B/E) material shows greater resistance to the delamination propagation.