• Title/Summary/Keyword: MULTI-RADIUS

Search Result 216, Processing Time 0.029 seconds

Multi-Observations of Magnetic Cloud

  • Sung, Suk-Kyung;Marubashi, Katsuhide;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • The geometry of an MC (magnetic cloud) in the interplanetary space can be estimated by the magnetic flux rope model. But the single point observation in the interplanetary space near the Earth is scanty to comprehend the global configuration of MC because the MC is considered a huge loop extending from the Sun with both legs rooted on the Sun. If the MC is observed at two different locations sufficiently far away from each other, it may provide the global configuration of the MC. In this study, we model the MC which is observed two different locations using a simple straight cylinder model. The MC model fit parameters are the flux rope axis orientation (${\Theta}$, ${\phi}$), the intensity of the magnetic field at the flux rope axis ($B_0$), the radius of the MC ($R_0$), and the impact parameter (p), etc. With the MC model fit parameters we look into the difference between two observed MC geometries and also calculate the magnetic flux and helicity of the MC.

  • PDF

Adaptive Zone Routing Technique for Wireless Ad hoc Network

  • Thongpook, Tawan;Thumthawatworn, Thanachai
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1839-1842
    • /
    • 2002
  • Ad hoc networks are characterized by multi- hop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. In this paper, we proposed a new technique to adjust the zone radius by concentrating the changes of network traffic in a particular direction, which we refer to as AZRP. We demonstrate that even though ZRP and AZRP share a similar hybrid routing behavior, the differences in the protocol mechanics can lead to significant performance differentials. We discuss the algorithm and report on the performance of AZRP scheme, and compare it to the ZRP routing protocol. Our results indicate clearly that AZRP outperforms ZRP by reducing significantly the number of route query messages. And thereby increases the efficiency of the network load.

  • PDF

CAE Analysis for Cooling Deformation on the radius curvature of Multi-layer Jar Vessel (다층두께 Jar용기의 곡률반경에 따른 냉각변형 CAE 해석)

  • Shin, Nam-Ho;Choi, Jong-Suk
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.261-264
    • /
    • 2006
  • 본 논문에서는 다양한 곡률반경의 연속에 의하여 살 두께 차가 큰 사출성형품에 불균일한 수축으로 인한 변형이 생성되어 이를 방지하기 위한 적정 CAE 냉각설계를 수행하였다. SAN 및 PMMA 재질의 Jar용기에 대한 균일냉각구조와 최적성형조건을 금형설계에 적용하고자 사출성형의 중요인자인 사출압력, 수지온도, 금형온도, 냉각조건 등을 moldflow 프로그램을 활용하여 연구를 수행하였다. 연구결과로서, 적정 변수인 사출압력 상승, 수지온도 낮춤, 급속냉각으로 후로우 등의 불량현상을 분석하였고 변형 및 불량을 극소화시킬 수 있는 냉각구조와 사이클 시간을 단축시킬 수 있는 사출성형조건을 제시하였고 적정 냉각모듈로부터 냉각시간을 단축하였다.

  • PDF

Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis

  • Asghar, Sehar;Naeem, Muhammad N.;Hussain, Muzamal;Taj, Muhammad;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.133-144
    • /
    • 2020
  • This paper aims to study vibration characteristics of chiral and zigzag double-walled carbon nanotubes entrenched on Donnell shell model. The Eringen's nonlocal elastic equations are being combined with Donnell shell theory to observe small scale response. Wave propagation is proposed technique to establish field equations of model subjected to four distinct end supports. A nonlocal model has been formulated to explore the frequency spectrum of both chiral and zigzag double-walled CNTs along with diversity of indices and nonlocal parameter. The significance of scale effect in relevance of length-to-diameter and thickness- to- radius ratios are discussed and displayed in detail. The numerical solution based on this nonlocal Donnell shell model can be further used to predict other frequency phenomena of double-walled and multi-walled CNTs.

The effects of circumstellar medium on Type Ic supernova light curve and color evolution and implications for LSQ14efd

  • Jin, Harim;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.64.3-64.3
    • /
    • 2019
  • A bright post-breakout emission was detected for a Type Ic supernova (SN Ic) LSQ14efd, which was among the first for SNe Ic. To explain the early-time light curve and color evolution, the effects of the circumstellar medium (CSM) are investigated. Four main parameters, CSM mass, CSM radius, nickel distribution, and explosion energy, are systematically explored in multi-group radiation hydrodynamics simulations, STELLA. Matching the model light curves and color evolution with the observation, we could constrain the parameter space and find out the best fit models. Our results imply that the progenitor suffered a strong mass loss shortly before the explosion and had a massive CSM of ~0.1 M.

  • PDF

Effects of Geometric Configuration on the Vibro-acoustic Characteristics of Radial Vibration of an Annular Disc (환형 디스크 형상이 래디얼 진동에 의한 음향방사 특성에 미치는 영향)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.596-604
    • /
    • 2007
  • This article investigates the effects of geometric configuration on the vibro-acoustic characteristics of in-plane vibration of a thick annular disc. Disc thickness and outer radius for a given inner radius are selected as independent variables having reasonable ranges. Variations in structural eigensolutions for radial modes are investigated using pre-developed analytical method. Based on these data, far-field sound pressure distributions due to the modal vibrations for a given geometry are also calculated using an analytical solution. Modal sound powers and radiation efficiencies are calculated from the far-field sound pressure distributions and vibratory velocity distributions on the radial surfaces. Based on the results explained above, the geometric configuration that minimizes modal sound radiations in a given frequency range is determined. Finally sound power and radiation efficiency spectra for a unit harmonic force from the selected geometric configuration are obtained from structural and acoustic modal data using the modal expansion technique. Multi-modal sound radiations of the optimized disc that are obtained using proposed analytical methods are confirmed with numerical results. Using the procedure introduced in this article, sound radiation due to in-plane modes within a specific frequency range can be minimized by the disc geometry modifications in a comprehensive and convenient manner.

Development of Design Blast Load Model according to Probabilistic Explosion Risk in Industrial Facilities (플랜트 시설물의 확률론적 폭발 위험도에 따른 설계폭발하중 모델 개발)

  • Seung-Hoon Lee;Bo-Young Choi;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • This paper employs stochastic processing techniques to analyze explosion risks in plant facilities based on explosion return periods. Release probability is calculated using data from the Health and Safety Executive (HSE), along with annual leakage frequency per plant provided by DNV. Ignition probability, derived from various researchers' findings, is then considered to calculate the explosion return period based on the release quantity. The explosion risk is assessed by examining the volume, radius, and blast load of the vapor cloud, taking into account the calculated explosion return period. The reference distance for the design blast load model is determined by comparing and analyzing the vapor cloud radius according to the return period, historical vapor cloud explosion cases, and blast-resistant design guidelines. Utilizing the multi-energy method, the blast load range corresponding to the explosion return period is presented. The proposed return period serves as a standard for the design blast load model, established through a comparative analysis of vapor cloud explosion cases and blast-resistant design guidelines. The outcomes of this study contribute to the development of a performance-based blast-resistant design framework for plant facilities.

Asymptotic Performance of MIMO-MC-CDMA Systems in Multi-cell Environments (다중셀 환경에서 MIMO-MC-CDMA시스템의 점근적 성능)

  • Kim, Kyeong-Yeon;Ham, Jae-Sang;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.47-52
    • /
    • 2007
  • This paper analyzes the output signal-to-interference-plus-noise ratio (SINR) for a multiple-input-multiple-output (MIMO) multicarrier code division multiple access (MC-CDMA) system with minium mean square error receivers in multi-cell environments. A previous work in single cell environments is extended into analysis in multi-cell environments. The use of Haar unitary code matrix for asymptotic analysis causes other cell interferences expressed with a diagonal matrix haying different diagonal values. This paper shows that other cell interferences converge to an identity matrix whose gain is expressed by only other cell interference power in mean square sense and finds asymptotic deterministic SINRs for a given other cell interference. Under the assumption that the sum of lognormal fading components is distributed by other lognormal function, we show the comparison between theoretical performances and simulations from the view point of bit error rate and present average throughput performance according to the cell radius.

Effects of multi-stacked hybrid encapsulation layers on the electrical characteristics of flexible organic field effect transistors

  • Seol, Yeong-Guk;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.257-257
    • /
    • 2010
  • One of the critical issues for applications of flexible organic thin film transistors (OTFTs) for flexible electronic systems is the electrical stabilities of the OTFT devices, including variation of the current on/off ratio ($I_{on}/I_{off}$), leakage current, threshold voltage, and hysteresis, under repetitive mechanical deformation. In particular, repetitive mechanical deformation accelerates the degradation of device performance at the ambient environment. In this work, electrical stabilities of the pentacene organic thin film transistors (OTFTs) employing multi-stack hybrid encapsulation layers were investigated under mechanical cyclic bending. Flexible bottom-gated pentacene-based OTFTs fabricated on flexible polyimide substrate with poly-4-vinyl phenol (PVP) dielectric as a gate dielectric were encapsulated by the plasma-deposited organic layer and atomic layer deposited inorganic layer. For cyclic bending experiment of flexible OTFTs, the devices were cyclically bent up to $10^5$ times with 5mm bending radius. In the most of the devices after $10^5$ times of bending cycles, the off-current of the OTFT with no encapsulation layers was quickly increased due to increases in the conductivity of the pentacene caused by doping effects from $O_2$ and $H_2O$ in the atmosphere, which leads to decrease in the $I_{on}/I_{off}$ and increase in the hysteresis. With encapsulation layers, however, the electrical stabilities of the OTFTs were improved significantly. In particular, the OTFTs with multi-stack hybrid encapsulation layer showed the best electrical stabilities up to the bending cycles of $10^5$ times compared to the devices with single organic encapsulation layer. Changes in electrical properties of cyclically bent OTFTs with encapsulation layers will be discussed in detail.

  • PDF

Concentrated Solar Flux Modeling for the Heat Transfer Analysis of Multi-Channeled Solar Receivers (다채널 태양열 흡수기의 열전달 해석을 위한 집광 열유속 모델링)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer analysis. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15mm channel length for the channel radius smaller than 1.5mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the channel entrance region is over predicted while the light penetrates more deeply into the channel. Once the presented results are imported into the heat transfer analysis, one could examine effects of material property and geometry of the receiver on air temperature profiles.