• Title/Summary/Keyword: MULTI INPUT MULTI OUTPUT(MIMO)

Search Result 366, Processing Time 0.022 seconds

On Antenna Orientation for Inter-Cell Interference Coordination in Cellular Network MIMO Systems

  • Sheu, Jeng-Shin;Lyu, Shin-Hong;Huang, Chuan-Yuan
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.639-648
    • /
    • 2016
  • Next-generation (4G) systems are designed to support universal frequency reuse (UFR) to achieve best use of valuable spectra. However, it leads to undesirable interference level near cell borders. To control this, 4G systems adopt techniques, such as network multiple-input multiple-output (MIMO) and inter-cell interference coordination (ICIC), to improve cell-edge throughput. Network MIMO aims at mitigating inter-cell interference towards cell-edge users (CEUs) through multi-cell cooperation, where each collaborative base station serves both cell-center users (CCUs) and CEUs, including other cells' CEUs, under a power constraint. The present ICIC strategies cannot be directly applied to network MIMO because they were designed in absence of multi-cell coordination. In the presence of network MIMO, this paper investigates antenna orientations in ICIC and the method of power management. Results show that a proper antenna orientation can improve the cell-edge capacity and meantime lower the interference to CCUs. Capacity inconsistency between CCUs and CEUs is detrimental to mobile communications. Simulation results show that the proposed power management for ICIC in network MIMO systems can achieve a uniform data rate regardless users' position.

Block-Ordered Layered Detector for MIMO-STBC Using Joint Eigen-Beamformers and Ad-Hoc Power Discrimination Scheme

  • Lee Won-Cheol
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.275-285
    • /
    • 2006
  • Suitable for multi-input multi-output (MIMO) communications, the joint beamforming space-time block coding (JBSTBC) scheme is proposed for high-speed downlink transmission. The major functionality of the scheme entails space-time block encoder and joint transmit and receive eigen-beamformer (EBF) incorporating with block-ordered layered decoder (BOLD), and its operating principle is described in this paper. Within these functionalities, the joint EBFs will be utilized for decorrelating fading channels to cause an enhancement in the spatial diversity gain. Furthermore, to fortify the capability of layered successive interference cancellation (LSIC) in block-ordered layered decoding process, this paper will develop a simple ad-hoc transmit power discrimination scheme (TPDS) based on a particular power discrimination function (PDF). To confirm the superior behavior of the proposed JBSTBC scheme employing ad-hoc TPDS, computer simulations will be conducted under various channel conditions with the provision of detailed mathematical derivations for clarifying its functionality.

Channel Capacity of BLAST based on the Zero-Forcing criterion (Zero-Forcing 기반의 BLAST 채널 용량)

  • Lee, Heun-Chul;Kim, Hee-Jin;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.34-41
    • /
    • 2008
  • In this paper, we present an asymptotical analysis of channel capacity of Bell labs layered space-time (BLAST) architectures based on a zero-forcing (ZF) criterion in the sense of signal-to-noise ratio (SNR). We begin by introducing a new relationship related to multi-input multi-output (MIMO) channel capacity. We prove that Diagonal Bell Labs Space-Time (DBLAST) attains the lower bound for MIMO channels when interference nulling is carried out based on the ZF-criterion. An exact closed-form expression for the probability density function of the channel capacity is analyzed. Based on the asymptotic behavior of the channel capacity of each layer, closed-form expressions for the asymptotic ergodic capacity are derived for BLAST. Based on the analysis presented in this paper, we gain an insight on the channel capacity behavior for a MIMO channel. Computer simulation results have verified the validity and accuracy of the proposed analysis for a wide range of antenna array sizes.

Local Observer Design for MIMO Nonlinear Systems (MIMO 비선형 시스템의 로컬 관측기 설계)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • This paper presents an observer design methodology for a special class of multi input multi output(MIMO) nonlinear systems. First, we characterize the class of MIMO nonlinear systems with a triangular structure. Also, the observability matrices that plays an important role in proving the convergence of the proposed observer are generalized to MIMO systems. By using the generalized observability matrices, it is shown that under the boundedness conditions of system state and input, the proposed observer guarantees the local exponential convergence to zero of the estimation error.

Approaching Near-Capacity on a Multi-Antenna Channel using Successive Decoding and Interference Cancellation Receivers

  • Sellathurai, Mathini;Guinand, Paul;Lodge, John
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.116-123
    • /
    • 2003
  • In this paper, we address the problem of designing multirate codes for a multiple-input and multiple-output (MIMO) system by restricting the receiver to be a successive decoding and interference cancellation type, when each of the antennas is encoded independently. Furthermore, it is assumed that the receiver knows the instantaneous fading channel states but the transmitter does not have access to them. It is well known that, in theory, minimummean- square error (MMSE) based successive decoding of multiple access (in multi-user communications) and MIMO channels achieves the total channel capacity. However, for this scheme to perform optimally, the optimal rates of each antenna (per-antenna rates) must be known at the transmitter. We show that the optimal per-antenna rates at the transmitter can be estimated using only the statistical characteristics of the MIMO channel in time-varying Rayleigh MIMO channel environments. Based on the results, multirate codes are designed using punctured turbo codes for a horizontal codedMIMOsystem. Simulation results show performances within about one to two dBs of MIMO channel capacity.

The performance of MIMO cooperative communication systems using the relay with multi-antennas and DSTC

  • Chan Kyu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 2023
  • The cooperative communication systems using MIMO(multiple input multiple-output) relay are known as one of the most promising techniques to improve the performance and coverage of wireless communication systems. In this paper, we propose the cooperative communication systems using the relay with multi-antennas and DSTC(distributed space time coding) for decode-and-forward protocol. As using DSTC for DF(decode-and-forward), we can minimize the risk of error propagation at the wireless system using relay system. Also, the MIMO channel cab be formed by multi-antenna and DSTC at the MS(mobile station)-RS(relay station) and at the RS-BS(base station).Therefore, obtaining truly constructive the MIMO diversity and cooperative diversity gain from the proposed approach, the performance of system can be more improved than one of conventional system (relay with single antenna, no relay). The improvement in bit error rate is investigated through numerical analysis of the cooperative communication system with the proposed approach.

Dynamic Feedback Selection Scheme for User Scheduling in Multi-user MIMO Systems (다중 사용자 MIMO 시스템의 사용자 스케쥴링을 위한 동적 피드백 선택 기법)

  • Kim, I-Cheon;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.646-652
    • /
    • 2015
  • In this paper, the system-level performance is evaluated for the feedback scheme on the pre-coding matrix index (PMI) and channel quality indication (CQI), which are required for user selection in the multi-user MIMO system. Our analysis demonstrates that the number of users, the number of selected users, and codebook size are the key factors that govern the performance of the best companion grouping (BCG)-based user scheduling. Accordingly, we have confirmed that the probability of forming the co-scheduled user group is determined by these factors, which implies that the number of PMI's and codebook size can be dynamically determined so as to maximize the average system throughput as the number of users varies in the cell.

Blind Channel Estimation based on Hadamard Matrix Interstream Transmission for Multi-Cell MIMO Networks (다중 셀 MIMO 네트워크를 위한 Hadamard 행렬 Interstream 전송 기반 Blind 채널 추정)

  • Yang, Jae-Seung;Hanif, Mohammad Abu;Park, Ju-Yong;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.119-125
    • /
    • 2015
  • In this paper, we introduce a Hadamard matrix interstream transmission based blind channel estimation for multi-cells multiple-input and multiple-output (MIMO) networks. The proposed scheme is based on a network with mobile stations (MS) which are deployed with multi cells. We assume that the MS have the signals from both cells. The signal from near cell are considered as desired signal and the signals from the other cells are interference signal. Since the channel is blind, so that we transmit Hadamard matrix pattern pilot stream to estimate the channel; that gives easier and fast channel estimation for large scale MIMO channel. The computation of Hadamard based system takes only complex additions, and thus the complexity of which is much lower than the scheme with Fourier transform since complex multiplications are not needed. The numerical analysis will give perfection of proposed channel estimation.

Real-Time Frequency Interference Analysis System for Performance Degradation Analysis of MIMO-OFDM WLAN Due to WPAN Interferer (WPAN 간섭원에 의한 MIMO-OFDM WLAN의 성능 열화 분석을 위한 실시간 주파수 간섭 분석 시스템)

  • Yoon, Hyungoo;Park, Jin-Soo;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.88-91
    • /
    • 2016
  • In this paper, we have proposed the frequency interference analysis system using both LabVIEW and Universal Software Radio Peripheral(USRP) for performance degradation analysis of Multi Input Multi Output-Orthogonal Frequency Division Multiplexing(MIMO-OFDM) Wireless Local Area Network(WLAN) due to Wireless Local Area Network(WPAN) interferer. The proposed system consists of three part, i.e., victim, channel, and interferer. Both victim and interferer are implemented by LaBVIEW and a USRP board. Then interfering signal and additive white Gaussian noise are combined with the wanted signals of a victim. Measured Bit Error Rate(BER) at the victim receiver is compared with theoretical BER according to various signal to interference plus noise power ratio (SINR) values. Measured and theoretical BER curves show good agreement.

Hexa-Band Hybrid MIMO Antenna for the Mobile Phone Surrounding Ground (접지에 둘러싸인 휴대폰을 위한 6중 밴드 하이브리드 MIMO 안테나)

  • Lee, Kyeong-Ho;Son, Taeho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.357-364
    • /
    • 2015
  • In this paper, we designed and implemented a PIFA(Planar Inverted F Antenna) + IFA(Inverted F Antenna) hybrid MIMO(Multi Input Multi Output) antenna for the hexa mobile communication service band. By the simultaneous operation both PIFA and IFA using the coupled feeding structure, we tried for application to modern mobile phones that have large ground size. A PIFA is applied to the ground area, and an IFA is applied to no ground small space on top of the phone. A diagonal fed MIMO antenna is implemented PCB embedded type without antenna carrier component. Implemented antenna on the bare board measured within 3 : 1 for VSWR under hexa mobile communication band as CDMA, GSM900, DCS, KPCS, USPCS, and WCDMA. Measured average gains and efficiencies were -5.19~-3.16 dBi and 30.27~48.26 % for the CDMA, GSM900 band, and -9.50~-5.19 dBi and 11.23~30.28 % for the DCS, KPCS, USPCS, WCDMA band. It's shown that studied antenna can be applied to the antenna for the modern mobile phone.