• Title/Summary/Keyword: MTT reduction assay

Search Result 185, Processing Time 0.027 seconds

The Cell Protective Effects of Dioscoreae Rhizoma by Antioxidant Activities on HeLa Cells (HeLa cell에서 산약(山藥)의 항산화 작용을 통한 세포보호효과에 대한 연구)

  • Yang, Jeong-Min;Jun, Yung-Joon;Nam, Ju-Young;Son, Mi-Young;Sung, Jung-Suk;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.2
    • /
    • pp.97-107
    • /
    • 2008
  • Purpose: This study is to examine antioxidant activities of Dioscoreae Rhizoma on HeLa cell Methods: Aqueous extract was used to treat HeLa cell with different concentrations treated with water or MeOH extract of Dioscoreae batatas (0, x10, x20, x40, x80). The MTT reduction assay and flow cytometric analysis was employed to quantify the differences in cell activity and viability. Results: Co-treatment with $H_2O_2$ and Dioscoreae batatas extracts reduced apoptosis of HeLa cells by decreasing G2/M arrest. Dioscoreae batatas extracts increased the survival rate of cells treated with cisplatin and Scutellaria barbata. Conclusion: Our results suggest that Dioscoreae Rhizoma extracts induce cell protective effect by antioxidant activities.

  • PDF

Polygonum cuspidatum Extract Induces Apoptosis in Human Uterine Cervical Carcinoma ME-180 Cells (호장근(虎杖根)이 자궁경부암세포(子宮經部癌細胞)의 성장억제(成長抑制) 및 세포고사(細胞枯死)에 미치는 영향)

  • Choi, Byun-Tak;Kim, Yeon-Hee;Lee, Dong-Nyung;Kim, Hyung-Jun
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • Purpose : Polygonum cuspidatum extract is an oriental herb which has been used for uterine diseases. In this study, the effects of Polygonum cuspidatum extract were investigated on inducing growth inhibition and apoptosis of human uterine cervical carcinoma cells. Methods : Viability of Polygonum cuspidatum extract-induced ME-180 cells was measured by MTT assay. Apoptotic cells were visualized by EtBr/AcOr staining under fluorescent microscope. Nucleosomal DNA fragmentation was assayed by agarose gel electrophoresis. Cell cycle distribution and changes in mitochondrial membrane potential were observed by flow cytometry. Results : Polygonum cuspidatum extract induced ME-180 cell death in a dose- and time-dependent manner. In the cells treated with Pc, the population of cells at sub-G1 phase significantly increased, and the condensed nuclei, apoptotic bodies and nucleosome-sized DNA were detected. Moreover, reduction in mitochondrial membrane potential was detected. Conclusion : Polygonum cuspidatum extract inhibits the growth and proliferation of ME-180 cells by apoptotic induction and facilitates its activity initiated by depolarization of mitochondria.

  • PDF

Growth Inhibition and Apoptosis Induction of Trichosanthis Radix Extract on Human Uterine Cervical Carcinoma Cells (자궁경부암세포에 대한 천화분(天花粉)의 성장억제 및 세포사멸효과)

  • Lim, Eun-Mee;Lee, Hyun-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.3
    • /
    • pp.77-91
    • /
    • 2005
  • Purpose : Trichosanthis Radix is traditional medical herb which has been shown to inhibit tumor cell proliferation. In this study, the effects of Trichosanthis Radix extract were investigated on inducing growth inhibition and apoptosis of human uterine cervical carcinoma cells. Methods : Human uterine cervical carcinoma cells line, ME-180, was used for the study. The cells were treated with varying concentrations of Trichosanthis Radix extract. Cell growth and inhibitory rate were measured by MTT assay. Apoptosis induction was detected by fluorescence microscopy, DNA ladder formation and flow cytometry. Results : Trichosanthis Radix extract inhibited the growth of human uterine cervical carcinoma cells in a dose-dependent manner. It induced ME-180 cells to undergo apoptosis including fragmented nuclei and nucleosome-sized DNA fragmentation. Flow cytometric analysis showed the increasing rate of apoptotic cells by Trichosanthis Radix extract. Reduction of mitochondrial membrane potential and increase in caspase-3 activity and were found in ME-180 cells treated with Trichosanthis Radix extract. Conclusion : Our data suggest that Trichosanthis Radix extract inhibit the growth and proliferation of ME-180 cells by apoptotic induction and facilitates its activity via caspase-3 activation initiated by depolarization of mitochondria.

  • PDF

Effect of Scutellariae Radix extraction (SRE) on oxidant-induced cell injury in human glimona cells (황금 추출물이 사람의 glioma 세포에서 oxidant에 의한 세포손상에 미치는 효과)

  • Kim, Sung-Dae;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.183-191
    • /
    • 2001
  • 신경교세포에서 황금추출물이 반응성 산소기에 의한 세포 사망을 방지할 수 있는지를 확인하기 위하여 사람의 glioama 세포주인 A172 세포를 사용하여 $H_2O_2$의 독성작용에 대한 영향을 조사하였다. 세포 사망 정도는 tryptan blue exclusion과 MTT reduction assay로 평가하였다. $H_2O_2$는 세포 사망을 유도하였으며 또한 세포내 ATP 함량을 감소시켰으며, 이러한 효과는 황금 추출물에 의해 방지되었으며 그 효과는 농도 의존적으로 나타났다. $H_2O_2$에 의한 세포 사망은 잘 알려진 flavonoid인 quercetin과 철착염제인 phenanthroline에 의해 방지되었으나, 항산화제인 DPPD나 Trolox에 의해서는 영향을 받지 않았다. $H_2O_2$는 poly (ADP-ribose) polymerase를 활성화시켰으며, 이러한 효과는 황금, quercetin 및 phenanthroline에 의해 억제되었다. 황금 추출물은 유기산화제인 t-buthyhydroperoxide 및 중금속인 수은에 의한 세포 사망을 방지하였다. 이러한 실험 결과는 황금 추출물이 $H_2O_2$에 의한 세포 사망을 방지하며 그 효과는 황금의 flavonoid 성분이 철과 결합하여 $H_2O_2$로부터 hydroxy radical의 생성을 억제함으로써 나타나는 것으로 추측된다.

  • PDF

Protective Effect of Fucoidan Extract from Ecklonia cava on Hydrogen Peroxide-Induced Neurotoxicity

  • Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Park, Sang Hyun;Kwon, Bong Seok;Kim, Gun-Hee;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.40-49
    • /
    • 2018
  • We evaluated the antioxidant activity and neuronal cell-protective effect of fucoidan extract from Ecklonia cava (FEC) on hydrogen peroxide ($H_2O_2$)-induced cytotoxicity in PC-12 and MC-IXC cells to assess its protective effect against oxidative stress. Antioxidant activities were examined using the ABTS radical scavenging activity and malondialdehyde-inhibitory effect, and the results showed that FEC had significant antioxidant activity. Intracellular ROS contents and neuronal cell viability were investigated using the DCF-DA assay and MTT reduction assay. FEC also showed remarkable neuronal cell-protective effect compared with vitamin C as a positive control for both $H_2O_2$-treated PC-12 and MC-IXC cells. Based on the neuronal cell-protective effects, mitochondrial function was analyzed in PC-12 cells, and FEC significantly restored mitochondrial damage by increasing the mitochondrial membrane potential (${\Delta}{\Psi}m$) and ATP levels and regulating mitochondrial-mediated proteins (p-AMPK and BAX). Finally, the inhibitory effects against acetylcholinesterase (AChE), which is a critical hydrolyzing enzyme of the neurotransmitter acetylcholine in the cholinergic system, were investigated ($IC_{50}$ value = 1.3 mg/ml) and showed a mixed (competitive and noncompetitive) pattern of inhibition. Our findings suggest that FEC may be used as a potential material for alleviating oxidative stress-induced neuronal damage by regulating mitochondrial function and AChE inhibition.

Effect of Polygonati Sibirici Rhizoma on Cell Viability in Human Glioma Cells

  • Kim, Min-Soo;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.95-105
    • /
    • 2008
  • Objectives : Although herbal medicines containing flavonoids have been reported to exert anti-tumor activities, it has not been explored whether Hwang-Jeong (Polygonati sibirici Rhizoma, PsR) exerts anti-tumor activity in human glioma. The present study was therefore undertaken to examine the effect of PsR on cell viability and to determine its underlying mechanism in A172 human glioma cells. Methods : Cell viability was estimated by MTT assay. Reactive oxygen species generation and mitochondrial membrane potential were measured by the fluorescence dyes. The phosphorylation of kinases was evaluated by western blot analysis and caspase activity was estimated using colorimetric assay kit. Results : PsR resulted in loss of cell viability in a dose- and time-dependent manner. PsR did not increase reactive oxygen species (ROS) generation and the PsR-induced cell death was also not affected by antioxidants, suggesting that ROS generation is not involved in loss of cell viability. Western blot analysis showed that PsR treatment caused rapid reduction in phosphorylation of extracellular signal-regulated kinase (ERK) without changes in p38 and Jun-NH2-terminal kinase (JNK). U0126, an inhibitor of ERK, increased the PsR-induced cell death, but inhibitors of p38 and JNK did not affect the cell death. PsR induced depolarization of mitochondrial membrane potential. Caspase activity was not stimulated by PsR and caspase inhibitors did not prevent the PsR-induced cell death. Conclusion : Taken together, these findings suggest that PsR results in human glioma cell death through caspaseindependent mechanisms involving down-regulation of ERK.

  • PDF

Ameliorating Effect of Gardenia jasminoides Extract on Amyloid Beta Peptide-induced Neuronal Cell Deficit

  • Choi, Soo Jung;Kim, Mi-Jeong;Heo, Ho Jin;Hong, Bumshik;Cho, Hong Yon;Kim, Young Jun;Kim, Hye Kyung;Lim, Seung-Taik;Jun, Woo Jin;Kim, Eun-Ki;Shin, Dong-Hoon
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.113-118
    • /
    • 2007
  • The brains of Alzheimer's disease (AD) patients are characterized by large deposits of amyloid beta peptide ($A{\beta}$). $A{\beta}$ is known to increase free radical production in nerve cells, leading to cell death that is characterized by lipid peroxidation, free radical formation, protein oxidation, and DNA/RNA oxidation. In this study, we selected an extract of Gardenia jasminoides by screening, and investigated its ameliorating effects on $A{\beta}$-induced oxidative stress using PC12 cells. The effects of the extract were evaluated using the 2',7'-dichlorofluorescein diacetate (DCF-DA) assay and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. To find the active component, the ethanol extract was partitioned with hexane, chloroform, and ethyl acetate, respectively, and the active component was purified by silica-gel column chromatography and HPLC. The results suggested that Gardenia jasminoides extract can reduce the cytotoxicity of $A{\beta}$ in PC 12 cells, possibly by reducing oxidative stress.

Short Low Concentration Cisplatin Treatment Leads to an Epithelial Mesenchymal Transition-like Response in DU145 Prostate Cancer Cells

  • Liu, Yi-Qing;Zhang, Guo-An;Zhang, Bing-Chang;Wang, Yong;Liu, Zheng;Jiao, Yu-Lian;Liu, Ning;Zhao, Yue-Ran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1025-1028
    • /
    • 2015
  • Background: Prostate cancer is one of the main causes of cancer death, and drug resistance is the leading reason for therapy failure. However, how this occurs is largely unknown. We therrfore aimed to study the response of DU145 cells to cisplatin. Materials and Methods: Du145 prostate cancer cells were treated with a low dose of cisplatin for 24 h and cell viability and number were determined by MTT assay and trypan blue exclusion assay, respectively. The real time polymerase chain reaction (PCR) was used to assess responses to cisplatin treatment. Results: After 24h $2{\mu}g/ml$ treatment did not result in significant reduction in cell viability or number. However, it led to enhanced cancer cell invasiveness. E-cadherin mRNA was reduced, and vimentin, Snail, Slug, metalloproteinase 9 (MMP9) mRNA expression increased significantly, a feature of epithelial-mesenchymal transition (EMT). Conclusions: Short time low concentration cisplatin treatment leads to elevated invasiveness of DU145 cancer cells and this is possibly due to EMT.

Effects of Paeoniae Radix Aqua-Acupuncture Solution on Tert-Butyl Hydroperoxide Induced Lipid Peroxidation and Antioxidative Enzymes in Cultured Rat Liver Cells (작약 약침액이 tert-butyl hydroperoxide 로 유도된 흰쥐 배양 간세포의 지질과산화반응 및 항산화효소 활성에 미치는 영향)

  • Moon, Jin-Young
    • Journal of Acupuncture Research
    • /
    • v.17 no.3
    • /
    • pp.176-187
    • /
    • 2000
  • Objectives : This study was purposed to investigate the antioxidative effects of Paeoniae radix aqua-acupuncture solution(PR) on culture liver cell system, lipid peroxidation and antioxidative enzyme activities in tert-butyl hydroperoxide(t-BHP) treatmented conditions. Methods : Cultured normal rat liver cell(Ac2F) were prepared and incubated with or without PR(at 2% volume in culture medium). After 16~18hr, cells placed in DMEM medium without serum, and then incubated with 1mM t-BHP for 2hr. Viable cells were detected by MTT assay, and the levels of lipid peroxide(LPO) were measured by TBA method. And catalase activity was measured as the decrease in hydrogen peroxide absorbance at 240nm on spectrophotometer using 30mM hydrogen peroxide. Superoxide dismutase(SOD) were assayed by recording the inhibition of nitro blue tetrazolium reduction with xanthine and xanthine oxidase. Glutathione peroxidase(GPX) activity was determined by the modified coupled assay developed by Paglia and Lawrence. The reaction was started by addition of 2.2mM hydrogen peroxide as substrate. The change in absorbance at 340nm was measured for 1min on spectrophotometer. Glutathione-S-transferase(GST) activity was assayed with CDNB as substrate and enzyme activity of GST towards the glutathione conjugation of CDNB. Results : Cell killing was significantly enhanced by addition of t-BHP compared to those of untreated group. PR pretreated cell resisted the toxic effects of t-BHP. LPO levels of t-BHP treatment group were significantly higher than other groups. This increased level was significandy reduced by PR pretreatment. The t-BHP treatment resulted in a decrease of catalase, GPX and GST activities. By contrast, PR pretreatment markedly increased compare to those of untreated groups. Conclusions : T-BHP which can produce intracellular free radical was used for inducer of the peroxidation of cellular lipids. PR protected the cell death induced by t-BHP and significantly increased cell viabiliry in the normal rat liver cell, and showed effective inhibition of lipid peroxidation, and elevations of catalase, GPX and GST activities. These results suggested that PR might play a protective role in lipid peroxidation by free radicals.

  • PDF

Induction of Anticarcinogenic Enzymes by Dichloromethane-soluble Fraction of Physalis alkekengi var. francheti Hort. in Mouse Hepatoma Cells

  • Seo, JiYeon;Kim, Hyo Jung;Kim, Jong-Sang
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.119-124
    • /
    • 2014
  • Physalis alkekengi var. francheti Hort. is known as an insecticide and traditional remedy for liver related diseases. Therefore, this study investigated the chemopreventive effects of extracts and several solvent fractions (n-hexane, dichloromethane, n-butanol, water) of Physalis alkekengi var. francheti Hort. First, their cytotoxicity and NQO1 activity were measured using an MTT assay, plus a quinone reductase [NAD(P)H dehydrogenase (quinone); NAD(P)H: (quinone acceptor) oxidoreductase, EC 1.6.99.2]-inducing activity assay was performed using cultured murine hepatoma cells (Hepa1c1c7) and its mutant cells(BpRc1). The reduction of electrophilic quinones by NQO1 is an important detoxification pathway and major mechanism of chemoprevention. When compared with the other solvent soluble fractions with different polarities, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. showed a higher NQO1-inducing activity that was also dose-dependent. Moreover, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. induced ARE-luciferase activities in HepG2-C8 cells that were generated by transfecting the ARE-luciferase gene construct, suggesting the Nrf2-ARE-mediated induction of anti-oxidative enzymes. In conclusion, the dichloromethane-soluble fraction of Physalis alkekengi var. francheti Hort. showed a relatively strong induction of detoxifying enzymes, thereby meriting further study to identify the active components and evaluate their potential as cancer preventive agents.