• Title/Summary/Keyword: MT 펄스

Search Result 6, Processing Time 0.019 seconds

Evaluate the Possibility of MT Pulse at 3T CE-TOF-MRA in Patients with Cerebral Infarction (뇌경색 환자의 3Tesla CE-TOF-MRA에서 MT 펄스의 유용성)

  • Bae, Sung-Jin
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.265-270
    • /
    • 2007
  • The purpose of this study was to evaluate the possibility of utilizing MT pulse at CE-TOF-MRA in patients with cerebral infarction. MRA using time-of-flight(TOF) technique with varying offset frequencies (0, 600, 1,200, and 1,800 Hz) magnetization transfer were performed in 10 patients with cerebral infarction at 3.0T MR scanner. CE-TOF-MRA and TOF-SPGR in normal vessel shown decreased SNR and increased CNR. The highest CNR in narrowing vessel shown at CE-TOF-MRA using 600 and 1,200 Hz offset frequencies. CNR in stenosis vessel increased dependent on using offset frequencies. The occlusion was clearly shown, and the highest CNR in occlusion shown at CE-TOF-MRA using 1,800 Hz offset frequencies. There was no shape variation in narrowing vessel or no visualizing vessel.

  • PDF

Design and testing of 25kW bipolar pulse power supply for mineral exploration of Mt.Taebaek (광물 탐사용 25kW급 양극성 펄스전원장치 설계 및 태백산 탐사시험)

  • Bae, Jung-Soo;Kim, Shin;Kim, Tae-Hyun;Yu, Chan-Hun;Kim, Hyoung-Suk;Kim, Jong-Soo;Jang, Sung-Roc
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.257-259
    • /
    • 2019
  • 본 논문은 광물 탐사를 위한 25kW급 양극성 펄스전원장치에 대해 기술한다. 소프트스위칭 기반의 고효율 LCC 공진형 컨버터와 풀 브리지 기반 양극성 펄스 스위칭부로 구성된 단위 모듈(500V, 12.5A)을 기반으로 설계한다. LCC 공진형 컨버터는 전류의 rms값을 줄이기 위해 공진 전류모양을 사다리꼴 형태로 설계하여 도전 손실측면에서 크게 개선되었고, 높은 전력밀도를 달성하기 위해 변압기의 누설 인덕턴스를 공진 파라메터로 활용한다. 추가적으로, 짧은 펄스폭을 가지도록 설계된 게이트 구동 회로는 출력을 DC에서 8kHz의 넓은 주파수 범위에서 동작시킬 뿐만 아니라 게이트 신호를 전달하기 위한 변압기의 사이즈를 줄이기 위해 제안된다. 단위모듈 형태로 개발된 양극성 펄스전원장치는 4개의 모듈이 직병렬로 결선되어 부하조건에 따라 Grounded dipole mode (2kV, 12.5A) 또는 Loop mode (500V, 50A)로 동작한다. 4모듈 직병렬 운전 시 발생하는 모듈 간 전압 불균형 문제를 해결하기 위해 메인 변압기에 보상권선이 감긴다. 본 논문에서는 개발된 양극성 펄스전원 장치의 설계를 저항부하 실험 및 태백산 탐사시험 결과를 바탕으로 검증한다.

  • PDF

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF

Three-Dimensional Magnetotelluric Modeling Using Integral Equations (적분방정식을 이용한 3차원 지자기 지전류 모델링)

  • Kim, Hee Joon;Lee, Dong Sung
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.191-199
    • /
    • 1994
  • We have developed an algorithm based on the method of integral equations to simulate the magnetotelluric (MT) responses of three-dimensional (3-D) bodies in a layered half-space. The inhomogeneities are divided into a number of cells and are replaced by an equivalent current distribution which is approximated by pulse basis functions. A matrix equation is constructed using the electric Green's tensor function appropriate to a layered earth, and is solved for the vector current in each cell. Subsequently, scattered fields are found by integrating electric and magnetic Green's tensor functions over the scattering current About a 3-D conductive body near the earth's surface, interpretation using 2-D transverse electric modeling schemes can imply highly erratic low resistivities at depth. This is why these routines do not account for the effect of boundary charges. However, centrally located profiles across elongate 3-D prisms may be modeled accurately with a 2-D transverse magnetic algorithm, which implicitly includes boundary charges in its formulation. Multifrequency calculations show that apparent resistivity and impedance phase are really two complementary parameters. Hence, they should be treated simultaneously in broadband MT interpretation.

  • PDF

The Sensitivity of the Parameters of Microcontroller Device with Coupling Caused by UWB-HPEM (Ultra Wideband-High Power Electromagnetics) (광대역 고출력 전자기 펄스에 의한 마이크로컨트롤러 소자의 매개변수들의 민감성 분석)

  • Hwang, Sun-Mook;Hong, Joo-Il;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.369-373
    • /
    • 2010
  • Modem electronic circuits are of importance for the function of communication, traffic systems and security systems. An intentional threat to these systems could be of big casualties and economic disasters. This paper has shown damage effect of microcontroller device with coupling caused by UWB-HPEM(Ultra Wideband-High Power Electromagnetics). The UWB measurements were done at an Anechoic Chamber using a RADAN UWB voltage source, which can generate a transient impulse of about 180 kV. The susceptibility level for microcontroller has been assessed by effect of various operation line lengths. The results of susceptibility analysis has showed that the effect of the reset line length on the MT(Ma1function Threshold) is larger than the effect of the different line length(Data, Power, Clock). With the knowledge of these parameters electronic system can be designed exactly suitable concerning the system requirements. Based on the results, susceptibility of microcontroller can be applied to protection plan to elucidate the effects of microwaves on electronic equipment.

Evaluation of Magnetization Transfer Ratio Imaging by Phase Sensitive Method in Knee Joint (슬관절 부위에서 자화전이 위상감도법에 의한 자화전이율 영상 평가)

  • Yoon, Moon-Hyun;Seung, Mi-Sook;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Although MR imaging is generally applicable to depict knee joint deterioration it, is sometimes occurred to mis-read and mis-diagnose the common knee joint diseases. In this study, we employed magnetization transfer ratio (MTR) method to improve the diagnosis of the various knee joint diseases. Spin-echo (SE) T2-weighted images (TR/TE 3,400-3,500/90-100 ms) were obtained in seven cases of knee joint deterioration, FSE T2-weighted images (TR/TE 4,500-5,000/100-108 ms) were obtained in seven cases of knee joint deterioration, gradient-echo (GRE) T2-weighted images (TR/TE 9/4.56/$50^{\circ}$ flip angle, NEX 1) were obtained in 3 cases of knee joint deterioration, In six cases of knee joint deterioration, fat suppression was performed using a T2-weighted short T1/tau inverse recovery (STIR) sequence (TR/TE =2,894-3,215 ms/70 ms, NEX 3, ETL 9). Calculation of MTR for individual pixels was performed on registration of unsaturated and saturated images. After processing to make MTR images, the images were displayed in gray color. For improving diagnosis, three-dimensional isotropic volume images, the MR tristimulus color mapping and the MTR map was employed. MTR images showed diagnostic images quality to assess the patients' pathologies. The intensity difference between MTR images and conventional MRI was seen on the color bar. The profile graph on MTR imaging effect showed a quantitative measure of the relative decrease in signal intensity due to the MT pulse. To diagnose the pathologies of the knee joint, the profile graph data was shown on the image as a small cross. The present study indicated that MTR images in the knee joint were feasible. Investigation of physical change on MTR imaging enables to provide us more insight in the physical and technical basis of MTR imaging. MTR images could be useful for rapid assessment of diseases that we examine unambiguous contrast in MT images of knee disorder patients.

  • PDF