• 제목/요약/키워드: MSWI ash

검색결과 39건 처리시간 0.031초

산업부산물을 이용한 친환경 연소재벽돌의 제조특성 (Manufacturing Characteristics of Environmental-friendly Waste Ash Brick with Industrial By-Products)

  • 김한석;정병길;김대용;강동효;장성호
    • 한국환경보건학회지
    • /
    • 제35권3호
    • /
    • pp.226-234
    • /
    • 2009
  • The main objective of this study was to evaluate the effects on shape and size, compressive strength, water absorption and heavy metals leaching with various weight mixing ratios in waste ash brick products using waste recycling MSWI(Municipal Solid Waste Incinerator) bottom ash, steel slag and waste building material. The manufacturing processes for the waste ash brick consist of screening, mixing, conveyor transmission, compaction.forming, and curing steps of raw materials. The weight mixing ratios of steel slag around bottom ash were adjusted within the ranges of 10% to 30%. The reported results show that the width and thickness of the manufactured waste ash brick could be satisfied with $90{\pm}2mm\;and\;57{\pm}2mm$, respectively which are K.S. standards of products qualities. And in case of length, only 20-Ba50Ss30, 20-Ba60Wb20 and 20-Ba50Wb30 for the mixing ratios could be satisfied with $190{\pm}2mm$ that is K.S. standards of products quality. The compressive strength and water absorption for 20-Ba50Ss30 and 20-Ba70Wb10 were over $8N/mm^2$ and below 15% respectively that are K.S. standards of manufactured waste ash brick. The results of tests for the heavy metals leaching in the all manufactured waste ash bricks are also passed to the wastes management regulations. The cost analysis of 20-Ba50Ss30 is evaluated. The manufacturing cost is evaluated 34.3 won/brick with 8 hours and 20tons of raw material per day. Incinerators with problems in bottom ash disposal can therefore derive significant benefits from the application of waste ash brick production.

표면산화 처리된 흡착제의 Benzene 및 MEK 흡착 특성 - HNO3, H2SO4 및 (NH4)2S2O8에 의한 표면산화- (Adsorption Characteristics of Benzene and MEK on Surface Oxidation Treated Adsorbent -Surface Oxidation by HNO3, H2SO4 and (NH4)2S2O8-)

  • 심춘희;이우근
    • 한국대기환경학회지
    • /
    • 제22권1호
    • /
    • pp.25-33
    • /
    • 2006
  • The objective of this research is to improve the adsorption capacity of adsorbent made from MSWI (Municipal Solid Waste Incinerator) fly ash by surface oxidation. Used oxidation agents were $HNO_{3}$, $H_{2}SO_{4}$ and $(NH_{4})_{2}S_{2}O_{8}$. These agents can modify the surface property of an adsorbent such as specific surface area, pore volume, and functional group. The surface structure was studied by BET method with $N_{2}$ adsorption. The acid value and base value were determined by Boehm's method. The adsorption properties were investigated with benzene and MEK (Methylethylketone). According to the results, the specific surface area of the adsorbent was increased from 309.2 $m^{2}$/g to 553.2 $m^{2}$/g by $HNO_{3}$ oxidation. But $H_{2}SO_{4}$ and $(NH_{4})_{2}S_{2}O_{8}$ oxidation was decreased slightly. After Oxidation, surface acid value increased, but base value decreased. FAA-N shows the highest acid value. The content of oxygen increased greatly and oxygen group was created on the adsorbent surface. The surface oxidation improved the adsorbing capacity for MEK. The amount of adsorbing MEK was increased from 189 $m^{2}$/g to 639 $m^{2}$/g by $HNO_{3}$ oxidation.

시멘트를 이용한 소각비산회의 안정화공정에 따른 문제점과 해결방안 (Evaluation and improvement of the stabilization process of the MSW Incinerator fly ash into cement)

  • 배해룡
    • 환경위생공학
    • /
    • 제16권2호
    • /
    • pp.63-70
    • /
    • 2001
  • This study was initiated to evaluate and resolve the potential problems caused as the MSWI(Municipal Solid Waste Incinerator) fly ash were stabilized and solidified into the cement. The physical and chemical properties of fly ashes (K and M) used in this study were fixed according to the operating conditions of the incineration plant. The compressible strength of the solidified matrix used in this study were measured at 7, 28, and 56 curing days, respectively, to evaluate the stability of the solidified matrix, which were further analyzed by XRD and SEM. The experimental results obtained in this study showed that the relatively long hours of curing periods were needed to solidify the fly ash. The solidified matrix containing K ash had the high and excellent compressible strength of $200{\;}kg/\textrm{cm}^2$, after 56 curing days, but was not good enough in appearance. The analytical data by SEM confirmed that the alkaline Na and K, which are highly dissolved in water, were included in the fly ash and evenly distributed into the exterior surface of the solidified matrix. Whereas, the solidified matrix containing M ash never showed such a compressible strength as shown in the K ash due to the severe fracture, even as early as 7 curing days. Based on its XRD analysis, it appeared that both $C_2S$ and $C_3S$ highly related to the compressible strength were not crystallyzed into the solidified matrix. However, the compressible strength of the solidified and cemented M ash was remarkably improved by 100 times, after the alkalinity was washed out, which indicated that it is equivalent to 30 to 40g per one kg of fly ash.

  • PDF

The pilot study on reclamation of incineration ashes of municipal waste in the demonstrative factory

  • Chang Hui-Lan;Liaw Chin-Tson;Leu Ching-Huoh
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.573-580
    • /
    • 2003
  • In Taiwan there are 21 Municipal Solid Waste Incinerators (MSWI) built to treat 80% of the MSW nationwide. Approximately 2,000 tons of incineration ashes of municipal waste contain reaction ash and fly ash (3:1 by weight)will be produced daily, and this may cause a serious waste problem. According to EPA regulations, reaction ash and fly ash produced after incineration should be properly treated. Landfill capacity barely meets the general demands. More efficient actions should be planned and taken. The study found 'reclamation' should be the optimal solution to this problem. Only limited research and previous successful experiences are available among other countries. An incinerator in Northern Taiwan is chosen for this study to make environmental bricks from the reaction ash and fly ash. From the previous tests, the results of strength test were measured. From the previous test results, the fly ash products have not reached the desired strength; hence, reaction ash is chosen for further pilot study. In the experiment, incineration ashes, cement and gravel are mixed in the ratio of 1:1:1(by weight), to ground concretization aggregate and pelletization aggregate, the concrete products made from the aggregates were of the strength of 108 $kgf/cm^2$ and 142 $kgf/cm^2$ individually. For the purpose of making nonstructural walls which met the State Building Standards. In the study, 50 tons of concrete products was yielded from aggregate and environmental bricks. Further observation and supervision are recommended to ascertain the resource recycling and reclamation. EPA has planned to build three 'Recycling Plants' in northern, middle and southern Taiwan to develop efficient techniques to produce concrete products, sub-base course, soundproofing wall, gravel, artificial fishing reefs, tiles, drainage, bricks and etc. This experiment of the demonstrative plant solves the problem of the incineration ashes and opens another opportunity to reclaim them.

  • PDF

소각잔사 중에 함유된 클로로벤젠과 클로로페놀의 열분해 거동 (The Behavior of Chlorobenzenes and Chlorophenols in Fly Ash by Thermal Treatment)

  • 심영숙;이우근;김진범
    • 한국대기환경학회지
    • /
    • 제14권4호
    • /
    • pp.293-302
    • /
    • 1998
  • This study was performed to investigate the behavior of chlorobenzenes (CIBZS) and chlorophenols (CIPhs) in a thermally treated MSWI fly ash. The experiment was carried out in a fixed bed reactor at the temperature range of 300~$600^{\circ}C$. Reaction time range was between 30 and 120 minutes, and NB and 02 gases were used as carrier gas. The decomposition rate of CIBZS was more affected by reaction time than by the reaction temperature. The decomposition rate of CIPhs was affected by both parameters. Decomposition rate of CIBZS and CIPhs reached 80.4% and 96.6% at $600^{\circ}C$, 120 min, respectively. Considering the effect of O2 content, decomposition rate of CIBZS and CIPhs was the highest at 10% of O2 content. Declorination and decomposition reactions Pere investigated by analyzing homologue distribution. Higher chlorinated CIBZS and CIPhs homologue decreased but lower chlorinated compounds increased with the increase of temperature. Effect of O2 on the homologue distribution of these compounds was not clear in the range of our experiment conditions.

  • PDF

TCE (trichloroethylene)으로부터 클로로벤젠과 클로로페놀의 생성특성 (Formation Characteristics of Chlorobenzenes and Chlorophenols from TCE)

  • 김은미;심영숙;이우근
    • 한국대기환경학회지
    • /
    • 제18권2호
    • /
    • pp.149-159
    • /
    • 2002
  • The objective of this study was to evaluate the formation characteristics of CBs and CPs from TCE, aliphatic compound. The experiment was carried out in a fixed reactor during 30 min under the oxidation condition at the range of temperature, 300~$700^{\circ}C$. MSWI fly ash was used as catalyst in this study. Total amount of CBs formed greater magnitude than that of CPs overall range of reaction temperature. It is proposed that the formation of CPs was caused from hydroxylation of CBs. According to increasing temperature to $600^{\circ}C$, the yield of CBs and CPs increased but significantly decreased at $700^{\circ}C$. It is suggested that decomposition rate was faster than formation rate at the high temperature. In the homologue distribution of CBs, DCBs were major products at 30$0^{\circ}C$ and the amount of higher chlorinated compound increased to $600^{\circ}C$. Because they were formed by chlorination of lower chlorinated compounds. In case of CPs, the amount of DCPs was 90% of total amounts in both thermal formation and catalytic reaction. On the other hand it was clearly observed that the chlorination rate in catalytic reaction was higher than in thermal formation with TCE only.

생활폐기물 소각시설 소각재에서의 유기오염물질 정성분석 및 용출특성 (The analysis and leaching characteristics of organic compounds in incineration residues from municipal solid waste incinerators)

  • 홍석영;김삼권;윤용수;박선구;김금희;황승률
    • 분석과학
    • /
    • 제19권1호
    • /
    • pp.86-95
    • /
    • 2006
  • 현재 가동 중인 생활폐기물 소각시설에서 배출되는 소각재의 수세처리에 의한 유기화학물질 용출특성을 확인하기 위해 GC/MSD로 정성 분석을 하였다. 바닥재 및 비산재에서 각각 44종 및 17종의 다양한 유기화합물질을 확인하였다. 이러한 정성분석은 각 피크의 질량스펙트럼에 대한 Library(NIST21, NIST107, WILEY229) 검색 후 일치도가 90% 이상인 유사지표(similarity index)에 의해 수행되었다. 바닥재는 Naphthalene 그리고 Phenanthrene인 2종의 다방향족화합물(Polycyclic Aromatic Hydrocarbons, PAHs)을 포함한 18종의 방향족화합물과 사슬모양의 탄화수소인 26종의 지방족화합물을 검출하였다. 비산재의 경우 잔류성유기오염물질(Persistent Organic Pollutants, POPs)인 헥사클로로벤젠(Hexachlorobenzene, HCB)을 포함한 10종의 방향족화합물과 7종의 지방족화합물을 정성적으로 확인하였다. 또한, 바닥재와 비산재의 용출액과 용출잔사의 용출특성을 비교분석한 결과, 바닥재에서는 Ethenylbenzene, Benzaldehyde, 1-Phenyl-ethanone 그리고 1,4-Benzenedicarboxylic acid dimethyl ester 등이, 비산재에서는 Naphthalene, Dodecane, 1,2,3,5-Tetrachlorobenzene, Tetradecane, Hexadecane 그리고 Pentachlorobenzene등의 유기화합물이 수층으로 용출되는 결과를 얻었다. 따라서 소각재 중 비산재 및 바닥재가 단순 매립될 경우 유기화합물에 의한 침출수 및 지하수, 토양 등 2차 오염이 발생할 것으로 추정되며, 이러한 2차 오염을 방지하기 위해서 소각재에 함유되어 있는 다양한 종류의 유기화학물질의 용출특성을 조사하여 이에 대한 효율적이고 적정한 관리가 이루어져야 할 것으로 판단된다.

생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 크롬과 니켈의 거동(擧動) (Effect of magnetic separation in removal of Cr and Ni from municipal solid waste incineration (MSWI) bottom ash)

  • 안지환;엄남일;조계홍;오명환;유광석;한기천;조희찬;한춘;김병곤
    • 자원리싸이클링
    • /
    • 제16권6호
    • /
    • pp.3-9
    • /
    • 2007
  • 생활 폐기물은 대부분 유리류와 자기류뿐만 아니라 많은 양의 iron을 함유하고 있으며 약 $3{\sim}11%$에 달한다. 대부분의 iron은 Ni-Fe와 Ni-Cr-Fe 같은 합금으로 존재하거나, 부식방지와 광택을 위해 Ni와 Cr로 도금된 iron으로 존재하고 있기 때문에 소각로에서 소각될 경우 철 재품 표면에 심하게 파손된 $Fe_3O_4$층과 함께 $NiFe_2O_4$FeCr_2O_4$을 형성하게 되어 바닥재에 존재하게 되어 중금속산화물 층을 형성시킬 수 있다. iron은 자력이 매우 강해 자력선별에 의해 쉽게 선별되며 이러한 효과로 인해 중금속 산화물의 선별까지 얻을 수 있다. 또한 바닥재는 다양한 Ni와 Cr 산화물들을 함유하고 있으며, Ni와 Cr은 강자성을 띈 물질이기 때문에 자력선별에 의해 큰 영향을 받을 수 있다. 따라서 자력선별에 따른 Ni와 Cr의 거동에 대해 조사하였으며 그 밖의 다른 중금속(Cu, Pb, Cd, As)들의 거동 또한 확인해 보았다. 그 결과 Ni와 Cr은 약 $45{\sim}50%$의 선별율을 보였으며, Cu와 Pb는 $15{\sim}20%$을 나타냈다. 또한 자력선별 전과 후의 바닥재에 대해 Ni와 Cr의 용출량을 확인해본 결과 자력선별 후 바닥재의 용출량이 더 낮음을 확인할 수 있었다.