• Title/Summary/Keyword: MSCs isolation

Search Result 19, Processing Time 0.028 seconds

A method of isolation and characterization of canine endometrial-derived mesenchymal stem cells

  • Mi Kyung Park;Kun Ho Song
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.2
    • /
    • pp.157-160
    • /
    • 2023
  • Endometrial tissue is a known source of mesenchymal stem cells (MSCs). We isolated canine endometrial stem cells from canine endometrial tissues using an enzymatic method and confirmed the immunophenotype of mesenchymal stem cells and multilineage differentiation. Canine endometrial tissues were obtained from canine ovariohysterectomy surgery and isolated using 0.2% collagenase type I. We measured the immunophenotype of stem cells using flow cytometry. To confirm the differentiation ability, a trilineage differentiation assay was conducted. In this study, canine endometrialderived MSCs (cEM-MSCs) were isolated by enzyme treatment and showed a spindle-shaped morphology under a microscope. Moreover, cEM-MSCs showed a trilineage differentiation ability. In this study, the canine endometrium was a good source of MSCs.

Isolation of Peripheral Blood-Derived Mesenchymal Stem Cells in Mares and Foals

  • Ye-Eun Oh;Eun-Bee Lee;Jong-Pil Seo
    • Journal of Veterinary Clinics
    • /
    • v.40 no.5
    • /
    • pp.323-329
    • /
    • 2023
  • Peripheral blood-derived mesenchymal stem cells (PB-MSCs) have shown promise in cell-based therapy, as they can be harvested with ease through minimally invasive procedures. This study aimed to isolate PB-MSCs from foals and mares and to compare the proliferation and cellular characteristics of the PB-MSCs between the two groups. Six pairs of mares and their foals were used in this study. MSCs were isolated from PB by direct plating in a tissue culture medium, and cell proliferation (population doubling time [PDT], and colony-forming unit-fibroblast assay [CFU-F]), and characterization (morphology, plastic adhesiveness, colony formation, trilineage differentiation) were examined. There was no significant difference in the PB-MSC yield, CFU-F, and PDT between the mares and foals. PB-MSCs from both mares and foals showed typical MSC characteristics in terms of spindle-shaped morphology, plastic adhesive properties, formation of colonies, trilineage differentiation. These results suggest that PB-MSCs isolated from horses, both adult horses, and foals, can be used for equine cell-based therapy.

Mesenchymal Stem Cell Lines Isolated by Different Isolation Methods Show Variations in the Regulation of Graft-versus-host Disease

  • Yoo, Hyun Seung;Yi, TacGhee;Cho, Yun Kyoung;Kim, Woo Cheol;Song, Sun U.;Jeon, Myung-Shin
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.133-140
    • /
    • 2013
  • Since the discovery of the immunomodulation property of mesenchymal stem cells (MSCs) about a decade ago, it has been extensively investigated whether MSCs can be used for the treatment of immune-related diseases, such as graft versus-host disease (GvHD). However, how to evaluate the efficacy of human MSCs for the clinical trial is still unclear. We used an MHC-mismatched model of GvHD (B6 into BALB/c). Surprisingly, the administration of the human MSCs (hMSCs) could reduce the GvHD-related mortality of the mouse recipients and xenogeneically inhibit mouse T-cell proliferation and $IFN-{\gamma}$ production in vitro. We recently established a new protocol for the isolation of a homogeneous population of MSCs called subfractionation culturing methods (SCM), and established a library of clonal MSC lines. Therefore, we also investigated whether MSCs isolated by the conventional gradient centrifugation method (GCM) and SCM show different efficacy in vivo. Intriguingly, clonal hMSCs (hcMSCs) isolated by SCM showed better efficacy than hMSCs isolated by GCM. Based on these results, the MHC-mismatched model of GvHD may be useful for evaluating the efficacy of human MSCs before the clinical trial. The results of this study suggest that different MSC lines may show different efficacy in vivo and in vitro.

Isolation and characterization of feline endometrial mesenchymal stem cells

  • Mi-Kyung Park;Kun-Ho Song
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.31.1-31.8
    • /
    • 2024
  • Background: Recently, there has been a growing interest in stem cells for human medicine. Limited feline endometrial mesenchymal stem cell (fEM-MSC) research in veterinary medicine necessitates reporting for future feline disease research and therapy. Objectives: This study aimed to isolate fEM-MSCs from feline endometrial tissues and evaluate their morphology, proliferative ability, differentiation ability, and immunophenotype. Methods: Feline endometrial tissues were obtained from the ovariohysterectomies of healthy cats and isolated using an enzymatic method. The morphology and proliferative ability of the isolated cells were assessed using a doubling time (DT) assay from passages 3 to 6 (P3 - P6). We measured pluripotency gene expressions of cells in P2 using quantitative real-time polymerase chain reaction (qRT-PCR). To investigate MSC characteristics, a trilineage differentiation assay was conducted in P4, and cells in P4 were immunophenotyped using flow cytometry. Results: fEM-MSCs showed a typical spindle-shaped morphology under a microscope, and the DT was maintained from P3 to P6. fEM-MSCs could differentiate into adipocytes, osteoblasts, and chondrocytes, and expressed three pluripotency markers (OCT4, SOX2, and NANOG) by qRT-PCR. Immunophenotypic analysis showed that the fEM-MSCs were CD14 -, CD34 -, CD45 -, CD9+, and CD44+. Conclusions: In this study, the feline endometrium was a novel source of MSCs, and to the best of our knowledge, this is the first report on the isolation method and characteristics of fEM-MSCs.

The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy

  • Kim, Eun Young;Lee, Kyung-Bon;Kim, Min Kyu
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.135-140
    • /
    • 2014
  • The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases.

Development of an effective dissociation protocol for isolating mesenchymal stem cells from bovine intermuscular adipose tissues

  • Jeong Min Lee;Hyun Lee;Seung Tae Lee
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.10-16
    • /
    • 2023
  • Intermuscular fat is essential for enhancing the flavor and texture of cultured meat. Mesenchymal stem cells derived from intermuscular adipose tissues are a source of intermuscular fat. Therefore, as a step towards developing a platform to derive intermuscular fat from mesenchymal stem cells (MSCs) for insertion between myofibrils in cultured beef, an advanced protocol of intermuscular adipose tissue dissociation effective to the isolation of MSCs from intermuscular adipose tissues was developed in cattle. To accomplish this, physical steps were added to the enzymatic dissociation of intermuscular adipose tissues, and the MSCs were established from primary cells dissociated with physical step-free and step-added enzymatic dissociation protocols. The application of a physical step (intensive shaking up) at 5 minutes intervals during enzymatic dissociation resulted in the greatest number of primary cells derived from intermuscular adipose tissues, showed effective formation of colony forming units-fibroblasts (CFU-Fs) from the retrieved primary cells, and generated MSCs with no increase in doubling time. Thus, this protocol will contribute to the stable supply of good quality adipose-derived mesenchymal stem cells (ADMSCs) as a fat source for the production of marbled cultured beef.

Isolation of Mesenchymal Stem-like Cells from a Pituitary Adenoma Specimen

  • Shim, Jin-Kyoung;Kang, Seok-Gu;Lee, Ji-Hyun;Chang, Jong Hee;Hong, Yong-Kil
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Some of the pituitary adenomas are invasive and spread into neighboring tissues. In previous studies, the invasion of pituitary adenomas is thought to be associated with epithelial-mesenchymal transition (EMT). In addition to that, we thought that mesenchymal stem cells (MSCs) exist in relevant microenvironment in pituitary adenoma. However, it has been little known about the existence of MSCs from pituitary adenoma. So we investigated whether mesenchymal stem-like cells (MSLCs) can be isolated from the pituitary adenoma specimen. We isolated and cultured candidate MSLCs from the fresh pituitary adenoma specimen with the same protocols used in culturing bone marrow derived MSCs (BM-MSCs). The cultured candidate MSLCs were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with MSCs. Candidate MSLCs were exposed to mesenchymal differentiation conditions to determine the mesenchymal differentiation potential of these cells. To evaluate the tumorigenesis of candidate MSLCs from pituitary adenoma, we implanted these cells into the brain of athymic nude mice. We isolated cells resembling BM-MSCs named pituitary adenoma stroma mesenchymal stem-like cells (PAS-MSLCs). PAS-MSLCs were spindle shaped and had adherent characteristics. FACS analysis identified that the PAS-MSLCs had a bit similar surface markers to BM-MSCs. Isolated cells expressed surface antigen, positive for CD105, CD75, and negative for CD45, NG2, and CD90. We found that these cells were capable of differentiation into adipocytes, osteocytes and chondrocytes. Tumor was not developed in the nude mice brains that were implanted with the PAS-MSLCs. In this study, we showed that MSLCs can be isolated from a pituitary adenoma specimen which is not tumorigenic.

Canine Mesenchymal Stem Cells Derived from Bone Marrow: Isolation, Characterization, Multidifferentiation, and Neurotrophic Factor Expression in vitro

  • Jung, Dong-In;Ha, Jeong-Im;Kim, Ju-Won;Kang, Byeong-Teck;Yoo, Jong-Hyun;Park, Chul;Lee, Jong-Hwan;Park, Hee-Myung
    • Journal of Veterinary Clinics
    • /
    • v.25 no.6
    • /
    • pp.458-465
    • /
    • 2008
  • The purpose of this study is to characterize canine mesenchymal stem cells (MSCs) derived from bone marrow (BM) for use in research on the applications of stem cells in canine models of development, physiology, and disease. BM was harvested antemortem by aspiration from the greater tubercle of the humerus of 30 normal beagle dogs. Canine BM-derived MSCs were isolated according to methods developed for other species and were characterized based on their morphology, growth traits, cell-surface antigen profiles, differentiation repertoire, immunocytochemistry results, and neurotrophic factor expression in vitro. The canine MSCs exhibited a fibroblast-like morphology with a polygonal or spindle-shaped appearance and long processes; further, their cell-surface antigen profiles were similar to those of their counterparts in other species such as rodents and humans. The canine MSCs could differentiate into osteocytes and neurons on incubation with appropriate induction media. RT-PCR analysis revealed that these cells expressed NGF, bFGF, SDF-1, and VEGF. This study demonstrated that isolating canine MSCs from BM, stem-cell technology can be applied to a large variety of organ dysfunctions caused by degenerative diseases and injuries in dogs. Furthermore, our results indicated that canine MSCs constitutively secrete endogenous factors that enhance neurogenesis and angiogenesis. Therefore, these cells are potentially useful for treating dogs affected with various neurodegenerative diseases and spinal-cord injuries.

MiR-182-5p Mediated by Exosomes Derived From Bone Marrow Mesenchymal Stem Cell Attenuates Inflammatory Responses by Targeting TLR4 in a Mouse Model of Myocardial Infraction

  • Chuang Sun;Wei Li;Yanhong Li;Jian Chen;Huixian An;Guangwei Zeng;Tingting Wang;Yazhou Guo;Changying Wang
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.49.1-49.15
    • /
    • 2022
  • Exosomes derived from mesenchymal stem cells (MSCs) could protect against myocardial infarction (MI). TLR4 is reported to play an important role in MI, while microRNA-182-5p (miR-182-5p) negatively regulates TLR4 expression. Therefore, we hypothesize that MSCs-derived exosomes overexpressing miR-182-5p may have beneficial effects on MI. We generated bone marrow mesenchymal stem cells (BM-MSCs) and overexpressed miR-182-5p in these cells for exosome isolation. H2O2-stimulated neonatal mouse ventricle myocytes (NMVMs) and MI mouse model were employed, which were subjected to exosome treatment. The expression of inflammatory factors, heart function, and TLR4 signaling pathway activation were monitored. It was found that miR-182-5p decreased TLR4 expression in BM-MSCs and NMVMs. Administration of exosomes overexpressing miR-182-5p to H2O2-stimulated NMVMs enhanced cell viability and suppressed the expression of inflammatory cytokines. In addition, they promoted heart function, suppressed inflammatory responses, and de-activated TLR4/NF-κB signaling pathway in MI mice. In conclusion, miR-182-5p transferred by the exosomes derived from BM-MSCs protected against MI-induced impairments by targeting TLR4.

A Simple Method for Cat Bone Marrow-derived Mesenchymal Stem Cell Harvesting

  • Jin, Guang-Zhen;Lee, Young-Soo;Choi, Eu-Gene;Cho, Kyu-Woan;Kong, Il-Keun
    • Journal of Embryo Transfer
    • /
    • v.23 no.2
    • /
    • pp.127-131
    • /
    • 2008
  • Bone marrow (BM) cell harvesting is a crucial element in the isolation of mesenchymal stem cells (MSCs). A simple method for harvesting cat BM cells is described. The results show that a large number of BM cells can rapidly be harvested from the cat by this simple procedure. MSCs prepared by density-gradient method were spindle-shaped morphology with bipolar or polygonal cell bodies and strongly positive for CD9 and CD44 and negative for CD18 and CD45-like. They were capable of differentiation to adipocytic and osteocytic phenotypes when exposed to appropriate induction media. The advantages of this method are its rapidity, simplicity, low invasiveness, and low donor attrition and good outcome.