• Title/Summary/Keyword: MSC/NASTRAN

Search Result 237, Processing Time 0.021 seconds

Development of the Computer Model Considering Flexible Effect of a Large-sized Truck on the Bump Road (범프 로드에서 대형트럭 프레임의 탄성효과를 고려한 컴퓨터 모델 개발)

  • Moon, Il-Dong;Chi, Chang-Hun;Kim, Byoung-Sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1202-1210
    • /
    • 2005
  • This paper develops a computer model for estimating the bump characterisitcs of a cat)over type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using MSC.ADAMS. A shock absorber, a rubber bush, and a leaf spring affect a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC.PATRAN. A mode analysis is performed with the frame model using MSC.NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double wheel bump test is performed with an actual vehicle. In the double wheel bump, vortical displacement, velocity, acceleration are measured. Those test results are compared with the simulation results.

Sloshing Load Analysis in Spherical Tank of LNG Carrier (LNG 운반선의 구형 화물창 슬로싱 해석)

  • Noh B. J.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.22-30
    • /
    • 2005
  • Sloshing loads, produced by the violent liquid free-surface motions inside the cargo tank have become an important design parameter in ship building industry since there have been demands for the increased sizes of the cargo containment system of LNG carriers. In this study, sloshing impact pressure acting on the shell of the spherical cargo tank of an LNG carrier as well as dynamic pressure and flow behavior around the pump tower located at the center of the tank have been calculated. Comparative numerical sloshing simulations for a spherical LNG tank using 2-D LR.FLUIDS which is based on the finite difference method and 3-D MSC.DYTRAN which is capable of calculating nonlinear fluid-structure interaction have been carried out. A method of calculating sloshing-induced dynamic loads and the subsequent structural strength analysis for pump tower of a spherical LNG carrier using MSC. DYTRAN and MSC.NASTRAN have been presented.

  • PDF

Study on the Aeroservoelastic Stability Analysis with ZAERO (ZAERO를 활용한 서보공력탄성학적 안정성 해석기법 연구)

  • Rho, Hong-Gi;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • The aeroservoelastic analysis that deals with the interactions of the inertial, elastic, and aerodynamic forces and the influence of the control system have been performed. MSC Nastran was used for the free vibration analysis of the structure model as the pre-analysis. ZAERO was used to calculate the unsteady aerodynamic forces. The unsteady aerodynamic forces were verified by comparing with Doublet Hybrid Method. Karpel's Minimum-State Approximation method was used for approximation of the aerodynamic forces to the Laplace domain in the frequency domain. The aeroservoelastic state-space equation was obtained by combining the aeroelastic equation with the actuator dynamics. The analysis of aeroservoelastic stability concerning the elevator input of the high aspect ratio model was performed. The root-locus method and time-integration method were used for the analysis of aeroservoelastic in frequency and time domain.

Shape Optimization of Structural Members Based on Isogeometry Concept (등기하 개념에 기초한 구조부재의 형상 최적화)

  • Lee, Joo-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • This study is concerned with the shape optimization of structural members frequently found in critical area in a structure system, that is, highly stressed zone. Isogeometry analysis is well known to be the very efficient way to integrate the geometric modeling(CAD) and computational analysis(CAE). This can be accomplished by directly using the geometric modeling by NURBS(Non-Uniform Rational Basis Spline). In this study, an efficient computer code adopting the isogeometry concept has been developed for the structural analysis, in which CAD information can be directly used in the finite element modeling. In order to show the validity of the present code, the present results are compared with those by using the commercial package, that is, MSC/NASTRAN. The present isogeometric analysis procedure has been integrated with the optimization procedure to deal with the optimization problem found in the context of structural mechanics. The present system has been successfully applied to the shape optimization of cantilever structure having bracket. From the present study, it can be seen the validity of the present approach and computer codes developed in this study. This paper ends with some discussions about the practical usefulness of the present approach which is based on isogeometry analysis, and extension of the present study.

Validation Study of Composite Rotor Blade Sectional Analysis Program (Ksec2d-AE) (복합재료 블레이드 단면 해석 프로그램(Ksec2d-AE)의 신뢰성 검증)

  • Bae, Jae-Seong;Kim, Hyun-Sik;Bae, Jin-Kyu;Lim, Tae-Hyun;Hwang, Jae-Min;Jung, Sung Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.277-282
    • /
    • 2018
  • In this study, the accuracy and efficiency of a composite rotor blade cross-section analysis program, Ksec2d-AE, which is available at an educational web-based platform called EDISON-CSD, are assessed for possible use in undergraduate structural analysis projects. To this purpose, the convergence of cross-sectional constants by varying the number of finite elements in the cross-section of a wind turbine blade is investigated. The stiffness constants along with the cross-sectional engineering offsets obtained using Ksec2d-AE are validated against a 3D finite element analysis program MSC NASTRAN.

A New Method to Determine the Characteristic Lengths for the Failure Analysis of Composite Joint (복합재 체결부의 파손해석을 위한 새로운 특성길이 결정 방법)

  • 안현수;권진희;최진호
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.10-21
    • /
    • 2003
  • Proposed is a new method to determine the characteristic lengths for the failure analysis of composite joint without experiments. New method uses the result that the stress distribution in the characteristic length specimens is linearly proportional to the applied load. The compressive characteristic lengths calculated by the present method are exactly same as the lengths obtained by the conventional method based on experiment. The new tensile characteristic length is defined using the strength of the notched laminate, while previous methods use the strength of the sound laminate. That change allows calculating the tensile characteristic length numerically without experiment like the compressive characteristic length. Finite element analyses are conducted by MSC/NASTRAN. The interface between the fastener and laminate is modeled by the contact surface element. The finite element results based on the new characteristic lengths show the excellent agreement with experimental results for the Graphite/Epoxy composite .joints.

Behavior and Optimization of Cylinder Applied by Composite Tape Wrapping Method (복합재/AISI4340 이중구조 후육실린더의 구조적 거동 및 최적화)

  • Lee, Kyeong-Kyoo;Kim, Wie-Dae
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.22-29
    • /
    • 2011
  • To increase the performance of thick-walled cylinders recently their length is continually enlarged. For that reason it is important to reduce weight of the thick-walled cylinders. In this paper the FE models to predict and estimate effects on the composite tapes were created with MSC.Nastran/Patran v.2005. First of all a autofrettage method was applied to the 2D model of the AISI4340 cylinder reduced the thick. And then the comparison of the numerical results with analysis results showed and verified by using T300/5208, IM7/PETI5, IM7/8552 tapes. Those are predicted to the effects of the angle of the composite tapes and elastic modulus according to the composite properties.

Buckling Analysis and Test of Composite Sandwich Cylinder for Underwater Application (수종운동체 적용을 위한 샌드위치 복합재 원통의 좌굴 해석 및 시험)

  • Kim, Ji-Seon;Lee, Gyeong-Chan;Kweon, Jin-Hwe;Cho, Jin-Ho;Cho, Jong-Rae;Cho, Sang-Rae;Cho, Yoon-Sik
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.17-22
    • /
    • 2011
  • In this paper, as a basic research to apply the composite sandwich to underwater vehicle, the manufacturing, analysis and test methods, and weight saving effect of a composite sandwich cylinder under external pressure were studied. A two-step manufacturing method to prevent the wrinkling of the sandwich cylinder face was proposed and the three cylinders were made and tested. Finite element results based on the shell and solid model using MSC.Nastran were compared with test results. The comparison showed that the linear finite element analysis using the shell and solid elements can predict the buckling pressure of the sandwich cylinder with approximately 3% difference. The parametric study of the filament wound cylinders revealed that the composite sandwich can reduce the weight of the cylinder more than 30% compared with the filament wound cylinder supporting the same pressure.

A Study on Optimmal Design of Filament Winding Composite Tower for 2 MW Class Horizontal Axis Wind Turbine Systems (2 MW급 대형 수평축 풍력발전시스템을 위한 필라멘트 와인딩 복합재 타워의 최적설계에 관한 연구)

  • Lim, Sung-Jin;Kong, Chang-Duk;Park, Hyun-Bum
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.54-61
    • /
    • 2012
  • In this study, a specific structural design procedure for 2 MW class glass/epoxy composite wind turbine system towers is newly proposed through load case study, trade-off study, optimal structural design and structural analysis. Optimal tower design is very important because its cost is about 20% of the wind turbine system's cost. In the structural design of the tower, three kinds of loads such as wind load, blades, nacelle and tower weight and blade aerodynamic drag load should be considered. Initial structural design is carried out using the netting rule and the rule of mixture. Then the structural safety and stability are confirmed using a commercial finite element code, MSC NASTRAN/PATRAN. The finally proposed tower configuration meets the tower design requirements.

Study on Forced Vibration Behavior of WIG Vehicle Main Wing Structure Excited by Propulsion System (프로펠러 엔진에 의해 가진되는 소형 위그선 주날개의 진동 거동 해석에 관한 연구)

  • Kong, Chang-Duk;Yoon, Jae-Huy;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.7-12
    • /
    • 2007
  • Previously study on structural design of the main wing of the twenty-seat class WIG (Wing in Ground Effect) craft. In the final design, three spars construction was selected for safety in the critical flight load, and the Carbon-Epoxy material was selected for lightness and structural stability. In this study, the forced vibration analysis was performed on the composite main wing structure of the twenty-seat class WIG craft with two-stroke pusher type reciprocating engine. The vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the Y-mode (lateral mode), the Z-mode (vertical mode) and the $M_{xyz}$-mode (twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the X-mode (longitudinal mode) with the oscillating propeller thrust which occurs in operation.

  • PDF