• Title/Summary/Keyword: MSC/MARC

Search Result 37, Processing Time 0.03 seconds

시스템공학연구소 보유 비선형 구조해석 S/W소개

  • 이재석
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.40-43
    • /
    • 1991
  • 한국과학기술연구원(KIST)부설 시스템공학연구소(SERI)가 보유하여 일반 사용자들에게 공개하고 있는 구조해석 S/W/로는 ABAQUS, ADINA, BOPACE-3D, DYNA-3D, MSC/NASTRAN, DIS/ADLPIPE, SAP5, KISTRAS, NONSAP, MARC 등을 들 수 있다. 이들 중 DIS/ADLPIPE, SAP5, KISTRAS, NONSAP은 CDC CYBER 960-31에 설치되어 있고 MARC는 NAS AS/XLV50에 설치되어 있으며 나머지는 CRAY-25 슈퍼컴퓨터에 설치되어 있다. 본 고에서는 이들 중에서 CRAY-2S 슈퍼컴퓨터에 설치되어 있으며 다양한 비선형 구조해석기능을 가지고 있는 ABAQUS, ADINA, MSC/NASTRAN 및 DYNA-3D에 대하여 개요, 기능 및 사용방법을 간략히 소개하고저 한다.

  • PDF

Postbuckling of Composite Cylinders under External Hydrostatic Pressure (외부 수압을 받는 복합재 원통의 후좌굴 연구)

  • Son, Hee-Jin;Choi, Jin-Ho;Cho, Jong-Rae;Cho, Sang-Rae;Kweon, Jin-Hwe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.196-203
    • /
    • 2007
  • The postbuckling behavior and failure of composite cylinders subjected to external hydrostatic pressure are investigated by a finite element method and test. A nonlinear finite element program, ACOS, is used for the postbuckling progressive failure analysis of composite cylinders. A total of 5 carbon/epoxy composite cylinders were fabricated and tested to verify the finite element results. For comparison, analyses by MSC/NASTRAN and MSC/MARC are additionally conducted. Among the softwares, the finite element program, ACOS, predicts the buckling loads the best with about 11 to 26% deviation from experimental results except for one specimen. While the finite element analysis shows global buckling modes with 4 waves in hoop direction, in the experiments the local buckling appears first and results in the final failure without global buckling.

Buckling of Filament Wound Thick Composite Cylinders under External Hydrostatic Pressure (외부 수압을 받는 필라멘트 와인딩 후판 복합재 원통의 좌굴 연구)

  • Moon, Chul-Jin;Hur, Seong-Hwa;Ahn, Jung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho;Cho, Jong-Rae;Cho, Sang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.147-155
    • /
    • 2009
  • The buckling and failure of filament wound thick composite cylinders under external hydrostatic pressure were investigated by the finite element analysis and test. ACOS, MSC.NASTRAN, and MSC.MARC were used for finite element analysis. T700 carbon-epoxy filament wound composite cylinders were fabricated to have winding angles of $[\pm30/90]_{FW}$, $[\pm45/90]_{FW}$, $[\pm60]_{FW}$, $[\pm60/90]_{FW}$, and tested to verify the finite element analysis. Among the softwares, ACOS predicted buckling load the best with about 1.7~14.3% deviation from test. Analysis and test shows cylinders do not recover the initial buckling pressure after buckling and directly lead to final failure.

Thermal decomposition and ablation analysis of solid rocket nozzle using MSC.Marc (상용해석 코드(MSC-Marc)를 활용한 노즐 내열부품의 숯/삭마 해석 기법)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.311-314
    • /
    • 2009
  • A two-dimensional thermal response and ablation simulation code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermal analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem and endothermic reaction in thermal decomposition are solved by rezoning and effective specific heat method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code through continuity of temperature and heat flux.

  • PDF

A Study on the Optimal Crimping Diameter of Aircraft Fuel Hoses in Manufacturing Process (항공기용 연료호스 제작시 최적 크림핑 직경에 관한 연구)

  • Jeon, Jun-Young;Kim, Byung-Tak
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2014
  • The high pressure hoses are widely used for the vehicles, aircraft, and overall industries. The hose assembly is generally composed of a nipple, a socket and a hose with reinforcement layers to increase the tensile strength. To produce the hose assembly, crimping or swaging process is usually used to clamp its components to ensure the prevention of fluid leakage. Crimping is a cold-working technique to form a strong bond between the workpiece and a non-metallic component. The crimping stroke is a primary parameter to be determined in the metalworking process, and it plays an important role in hose performance. This study aims at investigating the optimal crimping stroke according to the size of aircraft high pressure hose by using MSC/MARC. It is supposed that the results can be useful to get the information about the crimping stroke in manufacturing process, even with the different size of a hose.

Deformation analysis for crane pedestal due to Lug welding and lifting (Crane Pedestal의 Lug 용접 및 lifting 변형 해석)

  • Park, Jung-Gu;Jang, Gyeong-Bok;Jo, Si-Hun;Jang, Tae-Won
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.20-22
    • /
    • 2005
  • In this study, deformation of flange of pedestal crane due to Lug welding and lifting. Thermo elasto-plastic analysis was performed using commercial FE code MSC/MARC. The accuracy control of roundness is critical to the final product assembly. Deformation is mainly occurs during Lug welding. So, we determine welding sequence and Lug space in order to reduce deformation. And we also investigate safety of lifting Lug during crane lifting.

  • PDF

Analysis of the Mechanism of Longitudinal Bending Deformation Due to Welding in a Steel Plate by Using a Numerical Model (수치해석모델을 이용한 강판재의 종굽힘 용접변형 생성기구의 해석)

  • Kim, Yong Rae;Yan, Jieshen;Song, Gyu Yeong;Kim, Jae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Welding deformation is a permanent deformation that is caused in structures by welding heat. Welding distortion is the primary cause of reduced productivity, due to welded structural strength degradation, low dimensional accuracy, and appearance. As a result, research and numerous experiments are being carried out to control welding deformation. The aim of this study is to analyze the mechanism of longitudinal bending deformation due to welding. Welding experiments and numerical analyses were performed for this study. The welding experiments were performed on 4 mm and 8.5 mm thickness steel plates, and the numerical analysis was conducted on the welding deformation using the FE software MSC.marc.

Structure Optimization of a Nut for Prevention of Bolt Loosening (풀림방지용 너트 구조 최적화)

  • Cheong, Kwang-Yeil;Park, Tae-Won;Jung, Sung-Pil;Chung, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.965-970
    • /
    • 2010
  • Bolts and nuts are widely used to fasten mechanical parts together in machines and structures. The primary role of a nut is to maintain the axial force of a bolt. In this paper, a new type of a lock nut that uses a spring is studied. To have a spring within a nut, a cocking process to narrow the top of the nut is adopted, but cracking occurred in the process. In this study, strain of an initial model is measured using the finite element analysis program, MSC/Marc. The occurrence of the crack was studied by comparing the maximum observed strain of a model with the maximum strain indicated by an accurate stress-strain diagram of 1020 steel. Then, the structure of the lock nut was optimized by response surface analysis to prevent cracking. The prototype of the lock nut was manufactured on the basis of the optimization result, and cracking did not occur.

Thermal Decomposition and Ablation Analysis of Solid Rocket Propulsion (삭마 및 열분해 반응을 고려한 고체 추진기관의 열해석)

  • Kim, Yun-Chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.32-44
    • /
    • 2010
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. The thermogravimetric analysis (TGA) techniques have been used to characterize the thermal decomposition constants for Arrhenius parameters. Two heterogeneous reactions involving carbon and the oxidizing species of $H_2O$ and $CO_2$ are considered and determined by Zvyagin's ablation model and kinetic constants. The moving boundary problem and mesh moving are solved by remeshing-rezoning method in MSC-Marc-ATAS program. The difference between the calculated and experimental value of char and ablation thickness is up to 20%. For the performance prediction of thermal protection systems, this method will be integrated with a three-dimensional finite-element thermal and structure analysis code through the real time sensing of in-depth temperature and heat flux.