• Title/Summary/Keyword: MRLC

Search Result 5, Processing Time 0.019 seconds

Generating a Modified RLC(MRLC) from Gerber File for the PCB Inspection (컴퓨터 비젼에 의한 PCB 검사를 위한 검사 정보 생성 시스템 개발)

  • Lee, Cheol-Soo;Go, Eun-Hee
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.79-92
    • /
    • 1998
  • For the PCB inspection by computer vision, in some cases, the MRLC file should prepared. The MRLC file contains a RLC(Run Length Code) and a direction flag. In this paper, a generating method of MRLC is described. It is composed of two procedure as followings; (i) rasterizing Gerber file which is a vectorized image of PCB panel, and (ii) calculating a MRLC that is useful for the inspection as a template image. The suggested procedures are written in C-language and executable on Windows 95 and Windows NT.

  • PDF

Myoplasmic [$Ca^{2+}$], Crossbridge Phosphorylation and Latch in Rabbit Bladder Smooth Muscle

  • Kim, Young-Don;Cho, Min-Hyung;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • Tonic smooth muscle exhibit the latch phenomenon: high force at low myosin regulatory light chains (MRLC) phosphorylation, shortening velocity (Vo), and energy consumption. However, the kinetics of MRLC phosphorylation and cellular activation in phasic smooth muscle are unknown. The present study was to determine whether $Ca^{2+}$-stimulated MRLC phosphorylation could suffice to explain the agonist- or high $K^+$-induced contraction in a fast, phasic smooth muscle. We measured myoplasmic [$Ca^{2+}$], MRLC phosphorylation, half-time after step-shortening (a measure of Vo) and contractile stress in rabbit urinary bladder strips. High $K^+$-induced contractions were phasic at both $22^{\circ}C$ and $37^{\circ}C$: myoplasmic [$Ca^{2+}$], MRLC phosphorylation, 1/half-time, and contractile stress increased transiently and then all decreased to intermediate values. Carbachol (CCh)-induced contractions exhibited latch at $37^{\circ}C$: stress was maintained at high levels despite decreasing myoplasmic [$Ca^{2+}$], MRLC phosphorylation, and 1/half-time. At $22^{\circ}C$ CCh induced sustained elevations in all parameters. 1/half-time depended on both myoplasmic [$Ca^{2+}$] and MRLC phosphorylation. The steady-state dependence of stress on MRLC phosphorylation was very steep at $37^{\circ}C$ in the CCh- or $K^+$-depolarized tissue and reduced temperature flattend the dependence of stress on MRLC phosphorylation compared to $37^{\circ}C$. These data suggest that phasic smooth muscle also exhibits latch behavior and latch is less prominent at lower temperature.

Learning Control of Pipe Cutting Robot with Magnetic Binder (자석식 자동 파이프 절단기를 위한 학습제어기)

  • Kim Gook-Hwan;Lee Sung-Whan;Rhim Sung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1029-1034
    • /
    • 2006
  • In this paper, the tracking control of an automatic pipe cutting robot, called APCROM, with a magnetic binder is studied. Using magnetic force APCROM, a wheeled robot, binds itself to the pipe and executes unmanned cutting process. The gravity effect on the movement of APCROM varies as it rotates around the pipe laid in the gravitational field. In addition to the varying gravity effect other types of nonlinear disturbances including backlash in the driving system and the slip between the wheels of APCROM and the pipe also cause degradation in the cutting process. To maintain a constant velocity and consistent cutting performance, the authors adopt a repetitive learning controller (MRLC), which learns the required effort to cancel the tracking errors. An angular-position estimation method based on the MEMS-type accelerometer is also used in conjunction with MRLC to compensate the tracking error caused by slip at the wheels. Experimental results verify the effectiveness of the proposed control scheme.

AMPK γ is Required for Maintaining Epithelial Cell Structure and Polarity (AMPK γ 유전자의 표피세포극성 유지기능 규명)

  • Koh, Hyong-Jong
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.621-626
    • /
    • 2011
  • AMP-activated protein kinase (AMPK), a heterotrimeric complex comprising a catalytic ${\alpha}$ subunit and regulatory ${\beta}$ and ${\gamma}$ subunits, has been primarily studied as a major metabolic regulator in various organisms, but recent genetic studies discover its novel physiological functions. The first animal model with no functional AMPK ${\gamma}$ subunit gene was generated by using Drosophila genetics. AMPK ${\gamma}$ flies demonstrated lethality with severe defects in cuticle formation. Further histological analysis found that deletion of AMPK ${\gamma}$ causes severe defects in cell polarity in embryo epithelia. The phosphorylation of nonmuscle myosin regulatory light chain (MRLC), a critical regulator of epithelial cell polarity, was also diminished in AMPK ${\gamma}$ embryo epithelia. These defects in AMPK ${\gamma}$ mutant epithelia were successfully restored by over-expression of AMPK ${\gamma}$. Collectively, these results suggested that AMPK ${\gamma}$ is a critical cell polarity regulator in metazoan development.

Control of Automatic Pipe Cutting Robot with Magnet Binder Using Learning Controller (반복학습제어기를 이용한 자석식 자동 파이프 절단 로봇의 제어)

  • Lee Sung-Whan;Kim Gook-Hwan;Rhim Sung-Soo;Lee Soon-Geul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.541-546
    • /
    • 2005
  • Tracking control of an automatic pipe cutting robot (APCROMB) is studied. Using magnetic force APCROMB, which is designed and developed in Kyung Hee University, binds itself to the pipe and executes unmanned cutting process. The gravity effect on the movement of APCROMB varies as it rotates around the cylindrical pipe laid in the gravitational field. To maintain a constant velocity and consistent cutting performance against the varying gravitational effect, the authors adopt a multi-rate repetitive learning controller (MRLC), which learns the required effort to cancel the repetitive tracking errors caused by nonlinear effect. In addition to the varying gravity effect other types of nonlinear disturbances including backlash in the driving system and the slip between the wheels of APCROMB and the pipe also cause degradation in the cutting process. In order to identify those nonlinear disturbances the position estimation based on the encoder attached at the motor is not good enough. To identify the absolute angular position of APCROMB the authors propose the angular position estimation based on the signals from a MEMS-type two-axis accelerometer mounted on APCROMB. The tracking performances of APCROMB with a MRLC using the encoder-based position estimation is experimentally measured and results are shown. Also the difference between the encoder-based angular displacement measurement and the accelerometerbased angular displacement measurement is included.

  • PDF