Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.5.621

AMPK γ is Required for Maintaining Epithelial Cell Structure and Polarity  

Koh, Hyong-Jong (Department of Pharmacology, Mitochondria Hub Regulation Center (MHRC), Dong-A University College of Medicine)
Publication Information
Journal of Life Science / v.21, no.5, 2011 , pp. 621-626 More about this Journal
Abstract
AMP-activated protein kinase (AMPK), a heterotrimeric complex comprising a catalytic ${\alpha}$ subunit and regulatory ${\beta}$ and ${\gamma}$ subunits, has been primarily studied as a major metabolic regulator in various organisms, but recent genetic studies discover its novel physiological functions. The first animal model with no functional AMPK ${\gamma}$ subunit gene was generated by using Drosophila genetics. AMPK ${\gamma}$ flies demonstrated lethality with severe defects in cuticle formation. Further histological analysis found that deletion of AMPK ${\gamma}$ causes severe defects in cell polarity in embryo epithelia. The phosphorylation of nonmuscle myosin regulatory light chain (MRLC), a critical regulator of epithelial cell polarity, was also diminished in AMPK ${\gamma}$ embryo epithelia. These defects in AMPK ${\gamma}$ mutant epithelia were successfully restored by over-expression of AMPK ${\gamma}$. Collectively, these results suggested that AMPK ${\gamma}$ is a critical cell polarity regulator in metazoan development.
Keywords
Drosophila; AMPK ${\gamma}$; MRLC; epithelia; cell polarity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pan, D. A. and D. G. Hardie. 2002. A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion. Biochem. J. 367, 179-186.   DOI
2 Schneider, M. B., H. Matsuzaki, J. Haorah, A. Ulrich, J. Standop, X. Z. Ding, T. E. Adrian, and P. M. Pour. 2001. Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 120, 1263-1270.   DOI
3 Tan, J. L., S. Ravid, and J. A. Spudich. 1992. Control of nonmuscle myosins by phosphorylation. Annu. Rev. Biochem. 61, 721-759.   DOI
4 Thiery, J. P. 2002. Epithelial-mesenchymal transitions in tumor progression. Nat. Rev. Cancer 2, 442-454.   DOI
5 Tschaepe, J. A., C. Hammerschmied, M. Muhlig-Versen, K. Athenstaedt, G. Daum., and D. Kretzschmar. 2002. The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and APPL processing. EMBO J. 21, 6367-6376.   DOI
6 Evans, J. M., L. A. Donnelly, A. M. Emslie-Smith, D. R. Alessi, and A. D. Morris. 2005. Metformin and reduced risk of cancer in diabetic patients. Br. Med. J. 330, 1304-1305.   DOI
7 Gollob, M. H., M. S. Green, A. S. Tang, T. Gollob, A. Karibe, A. S. Ali Hassan, F. Ahmad, R. Lozado, G. Shah, Fananapazir, L. L. Bachinski, and R. Roberts. 2001. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N. Engl. J. Med. 344, 1823-1831.   DOI
8 Hardie, D. G., J. W. Scott, D. A. Pan, and E. R. Hudson. 2003. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546, 113-120.   DOI
9 Ivanov, A. I., D. Hunt, M. Utech, A. Nusrat, and C. A. Parkos. 2005. Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol. Biol. Cell 16, 2636-2650.   DOI
10 Kahn, B. B., T. Alquier, D. Carling, and D. G. Hardie. 2005. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15-25.   DOI
11 Knust, E. and O. Bossinger. 2002. Composition and formation of intercellular junctions in epithelial cells. Science 298, 1955-1959.   DOI
12 Edwards, K. A. and D. P. Kiehart. 1996. Drosophila nonmuscle myosin II has multiple essential roles in imaginal disc and egg chamber morphogenesis. Development 122, 1499-1511.
13 Lee, J. H., H. Koh, M. Kim, Y. Kim, S. Y. Lee, R. E. Karess, S. H. Lee, M. Shong, J. M. Kim, J. Kim, and J. Chung. 2007. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447, 1017-1020.   DOI
14 Milan, D., J. T. Jeon, C. Looft, V. Amarger, A. Robic, M. Thelander, C. Rogel-Gaillard , S. Paul, N. Iannuccelli, L. Rask, H. Ronne, K. Lundstrom, N. Reinsch, J. Gellin, E. Kalm, P. L. Roy, P. Chardon, and L. Andersson. 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288, 1248-1251.   DOI
15 Mirouse, V., L. L. Swick, N. Kazgan, D. St Johnston, and J. E. Brenman. 2007. LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J. Cell Biol. 177, 387-392.   DOI
16 Blair, E., C. Redwood, H. Ashrafian, M. Oliveira, J. Broxholme, B. Kerr, A. Salmon, I. Ostman-Smith, and H. Watkins. 2001. Mutations in the g2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mol. Genet. 10, 1215-1220.   DOI
17 Carling, D. 2004. The AMP-activated protein kinase cascade- a unifying system for energy control. Trends Biochem. Sci. 29, 18-24.   DOI