Journal of Life Science 2011 Vol. 21. No. 5. 621~626

[SSN :1225-9918
DOI :10.5352/JLS.2011.21.5.621

AMPK 7 is Required for Maintaining Epithelial Cell Structure and Polarity
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AMP-activated protein kinase (AMPK), a heterotrimeric complex comprising a catalytic a subunit and
regulatory 3 and 7y subunits, has been primarily studied as a major metabolic regulator in various
organisms, but recent genetic studies discover its novel physiological functions. The first animal model
with no functional AMPK 7 subunit gene was generated by using Drosophila genetics. AMPK v null
flies demonstrated lethality with severe defects in cuticle formation. Further histological analysis
found that deletion of AMPK 7 causes severe defects in cell polarity in embryo epithelia. The phos-
phorylation of nonmuscle myosin regulatory light chain (MRLC), a critical regulator of epithelial cell
polarity, was also diminished in AMPK y null embryo epithelia. These defects in AMPK y mutant
epithelia were successfully restored by over-expression of AMPK 7. Collectively, these results sug-
gested that AMPK 7 is a critical cell polarity regulator in metazoan development.
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Introduction

AMP-activated protein kinase (AMPK), a heterotrimeric
complex comprising a catalytic a subunit and regulatory {3
and y subunits, is well conserved from yeast (Saccharamyces
cerevisiag, worm (Caenorhabditis elegans) and fruit fly
(Drosopfifa) to human [2,6,8]. During metabolic stress, when
cellular AMP:ATP ratios rise, AMPK senses increased AMP
level with its cystathionine beta-synthase (CBS) domains in
its regulatory 7 subunit and is activated by phosphorylation
of Thrl72 in the activation loop of its catalytic a subunit
[2,6,8]. This activated AMPK down-regulates ATP-consum-
ing anabolic pathways, and up-regulates ATP-generating ca-
tabolic pathways to maintain energy homeostasis in the cell
[2,6,8]. Although the biochemical characteristics of AMPK
were extensively studied by cell line-based studies, there
were few genetic data on @ wvo function of metazoan
AMPK, due to the existence of multiple AMPK subunit iso-
forms encoded by different genes [8]. Because Drosgphila has
no redundancy in AMPK subunit genes [13], AMPK signal-
ing was successfully nullified in the Drosgphila system
[10,12]. All AMPK a -null mutant flies are lethal and fail
to develop to adulthood even in the presence of sufficient
nutrients [10,12]. Surprisingly, loss of AMPK a induces dis-
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ruption of cell polarity accompanying with disorganized ac-
tin cytoskeleton in embryonic and wing epithelial cells
[10,12]. These abnormalities in epithelial cell polarity are
highly similar to those of the mutants of LKB1, the upstream
kinase of AMPK [10]. Moreover, constitutive activation of
AMPXK restores these defects in LKBZ-null mutants, demon-
strating AMPK as a novel regulator of cell polarity [10].
These genetic studies using Drosgpfila successfully dis-
covered novel physiological functions of AMPK, and also
provide valuable tools to dissect its in wvo signaling
mechanisms.

In this report, the first AMPK y null Drosgphila mutant
was generated and characterized. The deletion of AMPK 7y
induced lethality and the severe defects in cuticle formation.
Further analysis showed that AMPK y has an important
role in maintaining epithelial cell polarity. These data

strongly suggest that AMPK 7 is critical for in vivo AMPK
signaling.

Materials and Methods

Fly Strains

The G51001ly line with a P-element in the AMPK 7 locus
was obtained from GenExel (Taejon, Korea). The deletion
mutants were generated from P-element excision
experiments. To generate the over-expression lines for

AMPK 7, a HA-tagged entire AMPK y V open reading
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frame was subcloned into pUAST vector. The fly lines for
FLP-DFS (autosomal flipase-dominant female sterile) techni-
que and /GAL4 were obtained from the Bloomington Stock
Center (Bloomington, IN, USA).

Production of AMPK 7 null embryos

The germ line clones of AMPK 7 ™ were generated us-
ing the autosomal FLP-DFS technique. In detail, 82AFRT
AMPK vy D39/TM6B females were crossed with yw
hsFLP/Y;; 82AFRT P[W, OVODI] males. Their progeny larvae
were heat-shocked for 2 hr at 37°C at the first instar larval
stage. yw hsFLP; 82AFRT P[w, ovd”|/82AFRT AMPK v
P females (3 day-old) were selected and crossed with
AMPK y ™/TM3 GFP males to obtain AMPK 7 “ null
embryos. To produce AMPK y null embryos expressing
AMPK 7y, yw hsFLP; 82AFRT P[w, ovd”|/82AFRT AMPK
7 ™ females were crossed with hs-Gal4 UAS-AMPK y
/GO Act-GFP. AMPK vy "”/TM3 GFP males. For ex-
pression of UAS-AMPK y in AMPK y null embryos, eggs
were collected and aged at 30°C.

Cuticle preparation
For the cuticle preparations, embryos were collected and
dechorinated as previously described [10]. Dechorinated em-

bryos were immersed in a solution containing acetic acid

and glycerol at a 31 ratio and incubated overnight at 65°C.
Embryos were then mounted in Hoyer’s medium and in-
cubated 24 hr at 65°C.

Immunostaining

I used anti-phospho MRLC (1:50, Cell Signaling
Technology, Danvers, MA, USA), anti-aPKC (1:1,000, Santa
Cruz Biotechnology, Santa Cruz, CA, USA), and anti-Discs
large (4F3, 1:200, DSHB, lowa City, 1A, USA) antibodies as
primary antibodies. Texas red and fluorescein isothiocyanate
(FITC)-conjugated secondary antibodies (Molecular Probes,
Eugene, OR, USA) were used at a 1:200 dilution. DNA was
visualized by DAPI (Sigma, St. Louis, MO, USA). Drasgifila
tissues were fixed in 4% formaldehyde for 5 min. After the
standard immunostaining procedures [10], tissues were ob-
served with a laser scanning confocal microscope LSM700

(Carl Zeiss, Gottingen, Germany).

Results and Discussion

Drosgpfiila AMPK v subunit is highly homologous to its
mammalian counterparts and Saccharomyces cerevisiae SNF4,
especially in its CBS domains [17]. Drosgphila has 6 AMPK
7 subunit isoforms encoded by a single gene (17, Fig. 1),

but the null mutant which nullified the expression of all
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Fig. 1. Genomic map of AMPK y . P-element insertion (triangle), exons (rectangles and arrow heads) and introns (lines) are shown.
AMPK v P contains an about 17 kb deletion encoding whole CBS domains.



AMPK 7 isoforms was not available. From an extensive
searching of the GenExel library (~20,000 independent EP
lines), we isolated AMPK 7 w10 (G5100), an EP line with
a P-element insertion near exons encoding the CBS domains
shared by all AMPK 7y
Subsequently, I have generated an AMPK y deficient line,

subunit isoforms (Fig. 1).

AMPK y P by imprecise excision of the P-element from
G5100. PCR-based molecular analyses demonstrated that the
exons containing the CBS domains were totally deleted in
this mutant (Fig. 1). RT-PCR clearly demonstrated that
AMPK v ™is a genuine null allele (data not shown).

This null mutant displayed a larval lethality, demonstrat-
ing that AMPK 7 is essential to complete development.
Then, I investigated role of AMPK 7 in early development
by generating germ line clones (GLC) of AMPK y null mu-
tants to eliminate the maternal effect. Interestingly, AMPK
Y D% hull embryos completely failed to hatch, demonstrat-
ing that AMPK 7 is indispensable for the completion of
embryogenesis. Extensive examination of AMPK 7 mutant
embryos revealed almost complete loss of the cuticle struc-
ture (Fig. 2).

Because the structure of embryonic cuticle highly reflects
the organization of underlying epidermis that secretes it, I
supposed that the epithelial cell structures of AMPK 7 mu-
tant embryos would be also severely impaired. Wild-type
Drosgphila embryonic epithelia contain two distinct mem-
brane domains-an apically localized cell-cell adhesive junc-
tion known as zonula adherens (ZA) and a more basal junc-

tional complex known as septate junction (S]) [9]. However,
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Fig. 2. Cuticle formation defects in AMPK y null embryos. Wild
type (Con) and AMPK y null (AMPK y %) embryo
cuticles were analyzed by dark field (DF) and phase con-
trast (PH) microscopy. Yellow scale bar: 50 um.
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in AMPK 7y mutant embryos, localization of atypical PKC
(aPKC), a component of the apical complex which regulates
the formation of ZA [9], was found severely disrupted (Fig.
3). Discs-large (Dlg), normally localizing at or below SJ [9],
was also mislocalized in AMPK y mutant embryos (Fig. 3).
When AMPK y was re-introduced in AMPK y mutants us-
ing GALA-UAS system, the defected epithelial structures and
mislocalized polarity determinants were successfully re-
stored (Fig. 3). These results strongly supported that AMPK
y is critical for maintaining epithelial structures in
Dresophila development.

In previous reports, extensive biochemical and genetic
analyses demonstrated that AMPK regulates cell polarity by
phosphorylating myosin regulatory light chain (MRLC; also
known as MLC2), a critical molecule for cell polarity estab-
lishment [3,7,10,15]. The regulatory phosphorylation site of
MRLC is directly phosphorylated by activated AMPK inn vitro
and in vivo [10]. After this phosphorylation, MRLC induces
the actin cytoskeleton structural change which has a critical
role in the regulation of cell polarity [10]. To test the role
of AMPK 7 in in vivo MRLC phosphorylation, AMPK 7
mutant embryos were stained with phospho-specific MRLC
antibodies. Although phosphorylated MRLC was specifically
localized to apical region of wild-type epithelia, the deletion
of AMPK y almost completely suppressed MRLC phosphor-
ylation (Fig. 4). Moreover, over-expression of AMPK 7 com-
pletely restored MRLC phosphorylation in the AMPK y null
epithelia (Fig. 4). Collectively, these data demonstrated that
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Fig. 3. AMPK 7 is required for maintaining epithelial cell
polarity. Epithelia of wild type (Con), AMPK y null
(AMPK v ), and AMPK 7 null expressing AMPK
v (AMPK vy b AMPK 7) were stained with an-
ti-aPKC antibody (aPKC, green), anti-Dlg antibody (Dlg,
red) and DAPI (DNA, blue). White scale bar: 5 pm.
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Fig. 4. Loss of MRLC phosphorylation in AMPK 7y null
epithelia. Wild type (Con), AMPK y null (AMPK 7
79, and AMPK 7 null expressing AMPK v (AMPK
r 7%, AMPK 7) embryo epithelia were stained with
anti-phospho MRLC antibody (pMRLC, green) and
DAPI (DNA, blue). White scale bar: 5 um.

AMPK 7 is essential for inn vivo MRLC phosphorylation, sug-
gesting the critical role of AMPK 7 in AMPK-mediated cell
polarity regulation.

In genetic analyses during decades, mutations in AMPK
7 isoforms induce various symptoms in various animals.
An autosomal dominant mutation in AMPK 7 3 induces a
dramatic increase in skeletal muscle glycogen content in pigs
[11]. After this discovery, several groups identified AMPK
7 2 gene mutations associated with familial cardiac hyper-
trophy [1,5]. The most patients with these 7 2 mutations also
demonstrated severe defects in electrical conductance, sim-
ilar to the
Wolff-Parkinson-White syndrome [1,5]. In addition, a dele-

tion of first exon of an AMPK 7 isoform induced pro-

conduction abnormalities observed in

gressive neurodegeneration and neuronal cell death in
Drasgphila [17). Because loss of cell polarity is strongly corre-
lated with more aggressive and invasive growth of malig-
nant cells [16], the cell polarity controlling roles of AMPK
7 suggest that AMPK 7 mediates the tumor suppressing
function. A small scale case study shows that metformin,
an AMPK activating anti-diabetic drug, reduces the risk of
cancer in diabetic patients [4]. Moreover, metformin sup-
presses carcinogen-induced cancers in hamsters [14]. These
data support the tumor suppressing role of AMPK, and raise
the possibility that metformin and other AMPK activating
agents can be used for the treatment of AMPK-related

cancers. Collectively, the AMPK y mutant and AMPK 7
transgenic models generated in this study will provide val-
uable tools and insights into investigating various AMPK

v -related diseases and abnormalities.
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