• Title/Summary/Keyword: MRI reconstruction

Search Result 132, Processing Time 0.025 seconds

Salt and Pepper Noise Removal Algorithm based on Euclidean Distance Weight (유클리드 거리 가중치를 기반한 Salt and Pepper 잡음 제거 알고리즘)

  • Chung, Young-Su;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1637-1643
    • /
    • 2022
  • In recent years, the demand for image-processing technology in digital marketing has increased due to the expansion and diversification of the digital market, such as video, security, and machine intelligence. Noise-processing is essential for image-correction and reconstruction, especially in the case of sensitive noises, such as in CT, MRI, X-ray, and scanners. The two main salt and pepper noises have been actively studied, but the details and edges are still unsatisfactory and tend to blur when there is a lot of noise. Therefore, this paper proposes an algorithm that applies a weight-based Euclidean distance equation to the partial mask and uses only the non-noisy pixels that are the most similar to the original as effective pixels. The proposed algorithm determines the type of filter based on the state of the internal pixels of the designed partial mask and the degree of mask deterioration, which results in superior noise cancellation even in highly damaged environments.

Pulmonary Artery Angioplasty for Improving Ipsilateral Lung Perfusion in Adolescent and Adult Patients: An Analysis Based on Cardiac Magnetic Resonance Imaging and Lung Perfusion Scanning

  • Dong Hyeon Son;Jooncheol Min;Jae Gun Kwak;Sungkyu Cho;Woong-Han Kim
    • Journal of Chest Surgery
    • /
    • v.57 no.4
    • /
    • pp.360-368
    • /
    • 2024
  • Background: The left pulmonary artery (LPA) may be kinked and stenotic, especially in tetralogy of Fallot, because of ductal tissue and anterior deviation of the conal septum. If LPA stenosis is not effectively treated during total correction, surgical angioplasty is occasionally performed. However, whether pulmonary artery (PA) angioplasty in adolescents or adults improves perfusion in the ipsilateral lung remains unclear. Methods: This retrospective review enrolled patients who underwent PA angioplasty for LPA stenosis between 2004 and 2019. Among patients who underwent a lung perfusion scan (LPS) or cardiac magnetic resonance imaging (cMRI) pre- and post-pulmonary angioplasty, those aged >13 years with <40% left lung perfusion (p-left) in the pre-angioplasty study were included. Preoperative and postoperative computed tomography, LPS, and cMRI data were collected. The perfusion ratio was analyzed according to the LPA's anatomical characteristics. Results: Seventeen adolescents and 16 adults (≥18 years old) were finally included (median age, 17 years). The most common primary diagnosis was tetralogy of Fallot (87.9%). In all patients, LPA angioplasty was performed concomitantly with right ventricular outflow tract reconstruction. No patients died. Preoperative p-left was not significantly different between adolescents and adults; however, adolescents had significantly higher postoperative p-left than adults. P-left significantly increased in adolescents, but not in adults. Seven patients had significant stenosis (z-score <-2.0) confined only to the proximal LPA and demonstrated significantly increased p-left. Conclusion: PA angioplasty significantly increased ipsilateral lung perfusion in adolescents. If focal stenosis is confined to the proximal LPA, PA angioplasty may improve ipsilateral lung perfusion, regardless of age.

Evaluation of MR Based Respiratory Motion Correction Technique in Liver PET/MRI Study (Liver PET/MRI 검사 시 MR 기반 호흡 움직임 보정 방법의 유용성 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui;Noh, Gyeong Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • Purpose Respiratory motion during PET/MRI acquisition may result in image blurring and error in measurement for volume and quantification of lesion. The aim of this study was to evaluate changes of quantitative accuracy, tumor size and image quality by applying MR based respiratory motion correction technique (MBRMCT) using integrated PET/MR scanner. Materials and Methods Data of 30 patients (aged $62.5{\pm}10.2y$) underwent $^{18}F-FDG$ liver PET/MR (Biograph mMR 3.0T, Siemens) study were collected. PET listmode data for 7 minutes was simultaneously acquired with maximum average gate (MAG), minimum time gate (MTG) and non gate (NG) T1 weighted MR images. Gated PET reconstruction was performed using mu-maps generated from MAG and MTG by setting 35% of efficiency window. Maximum SUV ($SUV_{max}$), peak SUV ($SUV_{peak}$), tumor size and full width at half maximum (FWHM) in the z-axis direction of MAG, MTG and NG PET images were evaluated. Results Compared to NG, mean $SUV_{max}$ and $SUV_{peak}$ were increased in MAG 13.15%(p<0.0001), 8.66%(p<0.0001), MTG 13.27%(p<0.0001), 8.80%(p<0.0001) and mean tumor size and FWHM were decreased in MAG 14.47%(p<0.0001), 15.49%(p=0.0004), MTG 14.89%(p<0.0001), 15.79%(p=0.0003) respectively. Mean $SUV_{max}$ and $SUV_{peak}$ of MTG were increased by 0.07%(p=0.8802), 0.13%(p=0.7766). Mean tumor size and FWHM of MTG were decreased by 0.49%(p=0.2786), 0.36%(p=0.2488) compared to MAG. There was no statistically significant difference between MAG and MTG which increase total scan time for about 7 and 2 minutes. Conclusion SUV, accuracy of tumor size and spatial resolution were improved in both of MAG and MTG by applying MBRMCT without installing additional hardware in liver PET/MR study. More accurate information can be provided with the increase of 2 minutes scan time if applying MTG of MBRMCT to various abdominal PET/MR studies affected by respiratory motion.

3D Generic Vertebra Model for Computer Aided Diagnosis (컴퓨터를 이용한 의료 진단용 3차원 척추 제네릭 모델)

  • Lee, Ju-Sung;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.4
    • /
    • pp.297-305
    • /
    • 2010
  • Medical image acquisition techniques such as CT and MRI have disadvantages in that the numerous time and efforts are needed. Furthermore, a great amount of radiation exposure is an inherent proberty of the CT imaging technique, a number of side-effects are expected from such method. To improve such conventional methods, a number of novel methods that can obtain 3D medical images from a few X-ray images, such as algebraic reconstruction technique (ART), have been developed. Such methods deform a generic model of the internal body part and fit them into the X-ray images to obtain the 3D model; the initial shape, therefore, affects the entire fitting process in a great deal. From this fact, we propose a novel method that can generate a 3D vertebraic generic model based on the statistical database of CT scans in this study. Moreover, we also discuss a method to generate patient-tailored generic model using the facts obtained from the statistical analysis. To do so, the mesh topologies of CT-scanned 3D vertebra models are modified to be identical to each other, and the database is constructed based on them. Furthermore, from the results of a statistical analysis on the database, the tendency of shape distribution is characterized, and the modeling parameters are extracted. By using these modeling parameters for generating the patient-tailored generic model, the computational speed and accuracy of ART can greatly be improved. Furthermore, although this study only includes an application to the C1 (Atlas) vertebra, the entire framework of our method can be applied to other body parts generally. Therefore, it is expected that the proposed method can benefit the various medical imaging applications.

Improved shape-based interpolation for three-dimensional reconstruction in gray-scale images (3차원 그레이-스케일 영상 재구성을 위한 개선된 형태-기반 보간)

  • Kim Hong, Helen;Park, Joo-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Using a series of medical tomograms, we can reconstruct internal organs or other objects of interest and generate 3-D images. It is generally accepted that the axial resolution determined by two sequential image slices is lower than the planar resolution in one image slices. Therefore, various methods of interpolation were developed for an accurate display of reconstructed images. In this paper, a new algorithm for 3-D reconstruction of the medical images such as MRI and X-ray CT is suggested. The algorithm is shape-based and utilizes parts of the gray-level information. We extend the conventional shape-based interpolation of the binary images to the gray-scale images using the shortest distance map. Using this new algorithm, We could reduce the execution time for interpolation while keeping similar high quality of the reconstructed images with reduced execution time and is applicable to the various medical tomograms.

  • PDF

Treatment of Posteolareral Rotatory Instability of the Knee (슬관절 후외방 불안정성의 치료)

  • Kim, Jin Goo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.15 no.2
    • /
    • pp.146-154
    • /
    • 2011
  • Injury of posterolateral corner is unusual, but it can cause disability due to severe instability and cartilage damage. However, the anatomical structures, diagnosis and treatment have not defined clearly yet. Posterolateral corner injury is regarded as the one of main factor to the results of failure in cruciate ligament reconstcution if it was undiagnosed and untreated. Diagnosis of postetolateral corner injury is consists of physical exam, radiographic finding, MRI, and arthroscopic findings. The treatment method of of postetolateral corner injury depends on the time and severity of injury. Anatomical reconstruction of posterolateral corner shows the better clinical outcome than non anatomical reconstructions, but the clinical results of long term follow up is still needed. Therefore, the aim of this article is to review the recent literatures and to organize diagnosis and treatment of posterolateral corner injury.

  • PDF

Development of 3D Modeling Technology of Human Vacancy for Bio-CAD (Bio-CAD를 위한 인체공동부의 3차원 모델링 기술 개발)

  • Kim, Ho-Chan;Bae, Yong-Hwan;Kwon, Ki-Su;Seo, Tae-Won;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.138-145
    • /
    • 2009
  • Custom medical treatment is being widely adapted to lots of medical applications. A technology for 3D modeling is strongly required to fabricate medical implants for individual patient. Needs on true 3D CAD data of a patient is strongly required for tissue engineering and human body simulations. Medical imaging devices show human inner section and 3D volume rendering images of human organs. CT or MRI is one of the popular imaging devices for that use. However, those image data is not sufficient to use for medical fabrication or simulation. This paper mainly deals how to generate 3D geometry data from those medical images. A new image processing technology is introduced to reconstruct 3D geometry of a human body vacancy from the medical images. Then a surface geometry data is reconstructed by using Marching cube algorithm. Resulting CAD data is a custom 3D geometry data of human vacancy. This paper introduces a novel 3D reconstruction process and shows some typical examples with implemented software.

Image Reconstruction of Eigenvalue of Diffusion Principal Axis Using Diffusion Tensor Imaging (확산텐서영상을 이용한 확산 주축의 고유치 영상 재구성)

  • Kim, In-Seong;Kim, Joo-Hyun;Yeon, Gun;Suh, Kyung-Jin;Yoo, Don-Sik;Kang, Duk-Sik;Bae, Sung-Jin;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.110-118
    • /
    • 2007
  • Purpose: The objective of this work to construct eigenvalue maps that have information of magnitude of three primary diffusion directions using diffusion tensor images. Materials and Methods: To construct eigenvalue maps, we used a 3.0T MRI scanner. We also compared the Moore-Penrose pseudo-inverse matrix method and the SVD (single value decomposition) method to calculate magnitude of three primary diffusion directions. Eigenvalue maps were constructed by calculating of magnitude of three primary diffusion directions. We did investigate the relationship between eigenvalue maps and fractional anisotropy map. Results: Using Diffusion Tensor Images by diffusion tensor imaging sequence, we did construct eigenvalue maps of three primary diffusion directions. Comparison between eigenvalue maps and Fractional Anisotropy map shows what is difference of Fractional Anisotropy value in brain anatomy. Furthermore, through the simulation of variable eigenvalues, we confirmed changes of Fractional Anisotropy values by variable eigenvalues. And Fractional anisotropy was not determined by magnitude of each primary diffusion direction, but it was determined by combination of each primary diffusion direction. Conclusion: By construction of eigenvalue maps, we can confirm what is the reason of fractional anisotropy variation by measurement the magnitude of three primary diffusion directions on lesion of brain white matter, using eigenvalue maps and fractional anisotropy map.

  • PDF

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF

Dedifferentiated Parosteal Osteosarcoma - A Case Report - (역분화성 방골성 골육종 - 증례 보고 -)

  • Sung, Ki-Sun;Chang, Moon-Jong;Lim, Kyung-Sub
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.13 no.2
    • /
    • pp.195-200
    • /
    • 2007
  • Dedifferentiated parosteal osteosarcoma is an uncommon variant of osteosarcoma. Dedifferentiation is known to be associated with a greater metastatic potential and a more rapid lethal clinical course. Thus recognition of dedifferentiation is important to establish the treatment strategy. But there may be few significant clinical clues to distinguish between dedifferentiated parosteal osteosarcoma and conventional one. A 29-year-old woman presented with 2-year history of discomfort and swelling in her proximal thigh. Examination showed a large, hard, non-mobile mass. Radiographs revealed a large ossified mass attached to the proximal femur. Diagnosis of parosteal osteosarcoma was established by MRI and needle biopsy. But she had a history of abrupt severe thigh pain and increased swelling before surgery. Follow up MRI showed enlargement of mass with invasion to muscle around tumor. The patient underwent an en-bloc resection of tumor and reconstruction. Histological examination showed parosteal sarcoma with dedifferentiation. The patient expired due to local recurrence of tumor and distant lung metastasis 2 months after the surgery. In case with rapid growth of a lesion or unusual severe pain, one must have a high index of suspicion with regard to dedifferentiation.

  • PDF